2024届安徽省蚌埠市局属校中考五模数学试题含解析_第1页
2024届安徽省蚌埠市局属校中考五模数学试题含解析_第2页
2024届安徽省蚌埠市局属校中考五模数学试题含解析_第3页
2024届安徽省蚌埠市局属校中考五模数学试题含解析_第4页
2024届安徽省蚌埠市局属校中考五模数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省蚌埠市局属校中考五模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在函数y=中,自变量x的取值范围是()A.x≥0 B.x≤0 C.x=0 D.任意实数2.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30° B.35° C.40° D.50°3.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米 B.1.5米 C.2.2米 D.2.4米4.如图,已知垂直于的平分线于点,交于点,,若的面积为1,则的面积是()A. B. C. D.5.实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论①a<b;②|b|=|d|;③a+c=a;④ad>0中,正确的有()A.4个 B.3个 C.2个 D.1个6.用配方法解方程时,可将方程变形为()A. B. C. D.7.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100° B.110° C.120° D.130°8.如图所示,在平面直角坐标系中,抛物线y=-x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+AP的最小值为().A.3 B. C. D.9.如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是()A.1m B.m C.3m D.m10.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为()A.3×109 B.3×108 C.30×108 D.0.3×1010二、填空题(共7小题,每小题3分,满分21分)11.计算:=_________

.12.现有一张圆心角为108°,半径为40cm的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为_____.13.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.14.16的算术平方根是.15.已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:;;,c是关于x的一元二次方程的两个实数根;其中正确结论是______填写序号16.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是_____.17.已知是一元二次方程的一个根,则方程的另一个根是________.三、解答题(共7小题,满分69分)18.(10分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.1714b880.16合计50c我们定义频率=,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是=0.1.(1)统计表中的a、b、c的值;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.19.(5分)画出二次函数y=(x﹣1)2的图象.20.(8分)计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.21.(10分)如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.22.(10分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.23.(12分)抛物线:与轴交于,两点(点在点左侧),抛物线的顶点为.(1)抛物线的对称轴是直线________;(2)当时,求抛物线的函数表达式;(3)在(2)的条件下,直线:经过抛物线的顶点,直线与抛物线有两个公共点,它们的横坐标分别记为,,直线与直线的交点的横坐标记为,若当时,总有,请结合函数的图象,直接写出的取值范围.24.(14分)如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC(1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O,若AC=AB=3,cosB=,求线段CE的长.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

当函数表达式是二次根式时,被开方数为非负数.据此可得.【详解】解:根据题意知,

解得:x=0,

故选:C.【点睛】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2、C【解析】分析:欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠APD的度数,即可由三角形的外角性质求出∠C的度数,由此得解.解答:解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故选C.3、C【解析】

在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.4、B【解析】

先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积.【详解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面积为1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故选B.【点睛】本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.5、B【解析】

根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正确;②|b|=|d|,故②正确;③a+c=a,故③正确;④ad<0,故④错误;故选B.【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键.6、D【解析】

配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.7、B【解析】

根据同弧所对的圆周角是圆心角度数的一半即可解题.【详解】∵∠BOC=40°,∠AOB=180°,∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所对的圆周角是圆心角度数的一半),故选B.【点睛】本题考查了圆周角和圆心角的关系,属于简单题,熟悉概念是解题关键.8、A【解析】

连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到点B,再利用配方法得到点A,得到OA的长度,判断△AOB为等边三角形,然后利用∠OAP=30°得到PH=AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.【详解】连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如图当y=0时-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB为等边三角形,∠OAP=30°得到PH=AP,因为AP垂直平分OB,所以PO=PB,所以OP+AP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=AB=3,所以最小值为3.故选A.【点睛】本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键.9、B【解析】

由∠AGE=∠CHE=90°,∠AEG=∠CEH可证明△AEG∽△CEH,根据相似三角形对应边成比例求出GH的长即BD的长即可.【详解】由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴==,即=,解得:GH=,则BD=GH=m,故选:B.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.10、A【解析】

科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【详解】将数据30亿用科学记数法表示为,故选A.【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(共7小题,每小题3分,满分21分)11、2【解析】

利用平方差公式求解,即可求得答案.【详解】=()2-()2=5-3=2.故答案为2.【点睛】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.12、18°【解析】试题分析:根据圆锥的展开图的圆心角计算法则可得:扇形的圆心角=1040考点:圆锥的展开图13、详见解析.【解析】

先根据不等式的性质求出每个不等式的解集,再在数轴上表示出来,根据数轴找出不等式组公共部分即可.【详解】(Ⅰ)解不等式①,得:x<1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:﹣1≤x<1,故答案为:x<1、x≥﹣1、﹣1≤x<1.【点睛】本题考查了解一元一次不等式组的概念.14、4【解析】

正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为415、①③【解析】试题解析:∵抛物线开口向上且经过点(1,1),双曲线经过点(a,bc),∴,∴bc>0,故①正确;∴a>1时,则b、c均小于0,此时b+c<0,当a=1时,b+c=0,则与题意矛盾,当0<a<1时,则b、c均大于0,此时b+c>0,故②错误;∴可以转化为:,得x=b或x=c,故③正确;∵b,c是关于x的一元二次方程的两个实数根,∴a﹣b﹣c=a﹣(b+c)=a+(a﹣1)=2a﹣1,当a>1时,2a﹣1>3,当0<a<1时,﹣1<2a﹣1<3,故④错误;故答案为①③.16、①②③【解析】

由公交车在7至12分钟时间内行驶的路程可求解其行驶速度,再由求解的速度可知公交车行驶的时间,进而可知小刚上公交车的时间;由上公交车到他到达学校共用10分钟以及公交车行驶时间可知小刚跑步时间,进而判断其是否迟到,再由图可知其跑步距离,可求解小刚下公交车后跑向学校的速度.【详解】解:公交车7至12分钟时间内行驶的路程为3500-1200-300=2000m,则其速度为2000÷5=400米/分钟,故①正确;由图可知,7分钟时,公交车行驶的距离为1200-400=800m,则公交车行驶的时间为800÷400=2min,则小刚从家出发7-2=5分钟时乘上公交车,故②正确;公交车一共行驶了2800÷400=7分钟,则小刚从下公交车到学校一共花了10-7=3分钟<4分钟,故④错误,再由图可知小明跑步时间为300÷3=100米/分钟,故③正确.故正确的序号是:①②③.【点睛】本题考查了一次函数的应用.17、【解析】

通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将2-代入计算即可.【详解】设方程的另一根为x1,又∵x=2-,由根与系数关系,得x1+2-=4,解得x1=2+.故答案为:【点睛】解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解.三、解答题(共7小题,满分69分)18、(1)10、0.28、1;(2)见解析;(3)6.4本;(4)264名;【解析】

(1)根据百分比=计算即可;(2)求出a组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【详解】(1)a=50×0.2=10、b=14÷50=0.28、c=50÷50=1;(2)补全图形如下:(3)所有被调查学生课外阅读的平均本数==6.4(本)(4)该校八年级共有600名学生,该校八年级学生课外阅读7本和8本的总人数有600×=264(名).【点睛】本题考查频数分布直方图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.19、见解析【解析】

首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.【详解】列表得:x…﹣10123…y…41014…如图:.【点睛】此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.20、【解析】分析:化简绝对值、0次幂和负指数幂,代入30°角的三角函数值,然后按照有理数的运算顺序和法则进行计算即可.详解:原式=+1﹣2×+=.点睛:本题考查了实数的运算,用到的知识点主要有绝对值、零指数幂和负指数幂,以及特殊角的三角函数值,熟记相关法则和性质是解决此题的关键.21、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2).【解析】分析:(4)过点B作BH⊥OA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(4)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(4)过点B作BH⊥OA于H,如图4(4),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案为4.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2).由(4)得:OH=2,BH=4.∵OC与⊙M相切于N,∴MN⊥OC.设圆的半径为r,则MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴DH=0,即点D与点H重合,∴BD⊥0A,BD=AD.∵BD是⊙M的直径,∴∠BGD=90°,即DG⊥AB,∴BG=AG.∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,∴===,∴AF=AD=2,GF=BD=2,∴OF=4,∴OG===2.同理可得:OB=2,AB=4,∴BG=AB=2.设OR=x,则RG=2﹣x.∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,∴(2)2﹣x2=(2)2﹣(2﹣x)2.解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.在Rt△ORB中,sin∠BOR===.故答案为.(4)①当∠BDE=90°时,点D在直线PE上,如图2.此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t.则有2t=2.解得:t=4.则OP=CD=DB=4.∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,∴点E的坐标为(4,2).②当∠BED=90°时,如图4.∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,∴==,∴BE=t.∵PE∥OC,∴∠OEP=∠BOC.∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,∴==,∴OE=t.∵OE+BE=OB=2t+t=2.解得:t=,∴OP=,OE=,∴PE==,∴点E的坐标为().③当∠DBE=90°时,如图4.此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.则有OD=PE,EA==(6﹣t)=6﹣t,∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED==,∴DE=BE,∴t=t﹣2)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.22、(1)画树状图得:则共有9种等可能的结果;(2)两次摸出的球上的数字和为偶数的概率为:.【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论