山东枣庄市2021-2022学年高考考前提分数学仿真卷含解析_第1页
山东枣庄市2021-2022学年高考考前提分数学仿真卷含解析_第2页
山东枣庄市2021-2022学年高考考前提分数学仿真卷含解析_第3页
山东枣庄市2021-2022学年高考考前提分数学仿真卷含解析_第4页
山东枣庄市2021-2022学年高考考前提分数学仿真卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的部分图象大致是()A. B.C. D.2.已知函数的定义域为,则函数的定义域为()A. B.C. D.3.不等式组表示的平面区域为,则()A., B.,C., D.,4.已知实数x,y满足约束条件,若的最大值为2,则实数k的值为()A.1 B. C.2 D.5.的展开式中的系数为()A.-30 B.-40 C.40 D.506.抛物线C:y2=2px的焦点F是双曲线C2:x2m-y21-m=1A.2+1 B.22+3 C.7.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为()A.8 B.9 C.10 D.118.若x,y满足约束条件且的最大值为,则a的取值范围是()A. B. C. D.9.曲线在点处的切线方程为()A. B. C. D.10.若,则“”的一个充分不必要条件是A. B.C.且 D.或11.在中,点为中点,过点的直线与,所在直线分别交于点,,若,,则的最小值为()A. B.2 C.3 D.12.函数在的图象大致为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.以,为圆心的两圆均过,与轴正半轴分别交于,,且满足,则点的轨迹方程为_________.14.某中学举行了一次消防知识竞赛,将参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,记图中从左到右依次为第一、第二、第三、第四、第五组,已知第二组的频数是80,则成绩在区间的学生人数是__________.15.已知函数是定义在上的奇函数,则的值为__________.16.函数(为自然对数的底数,),若函数恰有个零点,则实数的取值范围为__________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)经常网购偶尔或不用网购合计男性50100女性70100合计(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.参考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.晋级成功晋级失败合计男16女50合计(1)求图中的值;(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望.(参考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02419.(12分)为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如表数据:处罚金额(单位:元)5101520会闯红灯的人数50402010若用表中数据所得频率代替概率.(1)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?(2)将选取的200人中会闯红灯的市民分为两类:类市民在罚金不超过10元时就会改正行为;类是其他市民.现对类与类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类市民的概率是多少?20.(12分)2019年9月26日,携程网发布《2019国庆假期旅游出行趋势预测报告》,2018年国庆假日期间,西安共接待游客1692.56万人次,今年国庆有望超过2000万人次,成为西部省份中接待游客量最多的城市.旅游公司规定:若公司某位导游接待旅客,旅游年总收人不低于40(单位:万元),则称该导游为优秀导游.经验表明,如果公司的优秀导游率越高,则该公司的影响度越高.已知甲、乙家旅游公司各有导游40名,统计他们一年内旅游总收入,分别得到甲公司的频率分布直方图和乙公司的频数分布表如下:分组频数(1)求的值,并比较甲、乙两家旅游公司,哪家的影响度高?(2)从甲、乙两家公司旅游总收人在(单位:万元)的导游中,随机抽取3人进行业务培训,设来自甲公司的人数为,求的分布列及数学期望.21.(12分)已知集合,,,将的所有子集任意排列,得到一个有序集合组,其中.记集合中元素的个数为,,,规定空集中元素的个数为.当时,求的值;利用数学归纳法证明:不论为何值,总存在有序集合组,满足任意,,都有.22.(10分)某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修.工厂规定当日损坏的元件A在次日早上8:30之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作.每个工人独立维修A元件需要时间相同.维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:日期1日2日3日4日5日6日7日8日9日10日元件A个数91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A个数12241515151215151524从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数.(Ⅰ)求X的分布列与数学期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

判断函数的性质,和特殊值的正负,以及值域,逐一排除选项.【详解】,函数是奇函数,排除,时,,时,,排除,当时,,时,,排除,符合条件,故选C.【点睛】本题考查了根据函数解析式判断函数图象,属于基础题型,一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项.2.A【解析】试题分析:由题意,得,解得,故选A.考点:函数的定义域.3.D【解析】

根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中,,

设,则,的几何意义为直线在轴上的截距的2倍,

由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;

设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.4.B【解析】

画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解即可.【详解】可行域如图中阴影部分所示,,,要使得z能取到最大值,则,当时,x在点B处取得最大值,即,得;当时,z在点C处取得最大值,即,得(舍去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.5.C【解析】

先写出的通项公式,再根据的产生过程,即可求得.【详解】对二项式,其通项公式为的展开式中的系数是展开式中的系数与的系数之和.令,可得的系数为;令,可得的系数为;故的展开式中的系数为.故选:C.【点睛】本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.6.A【解析】

先由题和抛物线的性质求得点P的坐标和双曲线的半焦距c的值,再利用双曲线的定义可求得a的值,即可求得离心率.【详解】由题意知,抛物线焦点F1,0,准线与x轴交点F'(-1,0),双曲线半焦距c=1,设点Q(-1,y)ΔFPQ是以点P为直角顶点的等腰直角三角形,即PF所以PQ⊥抛物线的准线,从而PF⊥x轴,所以P1,2∴2a=P即a=故双曲线的离心率为e=故选A【点睛】本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.7.D【解析】

由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件,求得,从而求得,解不等式求得结果.【详解】由题意,本题符合几何概型,区间长度为6,使得成立的的范围为,区间长度为2,故使得成立的概率为,又,,,令,则有,故的最小值为11,故选:D.【点睛】该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.8.A【解析】

画出约束条件的可行域,利用目标函数的最值,判断a的范围即可.【详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.9.A【解析】

将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线方程.【详解】曲线,即,当时,代入可得,所以切点坐标为,求得导函数可得,由导数几何意义可知,由点斜式可得切线方程为,即,故选:A.【点睛】本题考查了导数的几何意义,在曲线上一点的切线方程求法,属于基础题.10.C【解析】,∴,当且仅当时取等号.故“且”是“”的充分不必要条件.选C.11.B【解析】

由,,三点共线,可得,转化,利用均值不等式,即得解.【详解】因为点为中点,所以,又因为,,所以.因为,,三点共线,所以,所以,当且仅当即时等号成立,所以的最小值为1.故选:B【点睛】本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.12.B【解析】

先考虑奇偶性,再考虑特殊值,用排除法即可得到正确答案.【详解】是奇函数,排除C,D;,排除A.故选:B.【点睛】本题考查函数图象的判断,属于常考题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

根据圆的性质可知在线段的垂直平分线上,由此得到,同理可得,由对数运算法则可知,从而化简得到,由此确定轨迹方程.【详解】,,和的中点坐标为,且在线段的垂直平分线上,,即,同理可得:,,,点的轨迹方程为.故答案为:.【点睛】本题考查动点轨迹方程的求解问题,关键是能够利用圆的性质和对数运算法则构造出满足的方程,由此得到结果.14.30【解析】

根据频率直方图中数据先计算样本容量,再计算成绩在80~100分的频率,继而得解.【详解】根据直方图知第二组的频率是,则样本容量是,又成绩在80~100分的频率是,则成绩在区间的学生人数是.故答案为:30【点睛】本题考查了频率分布直方图的应用,考查了学生综合分析,数据处理,数形运算的能力,属于基础题.15.【解析】

先利用辅助角公式将转化成,根据函数是定义在上的奇函数得出,从而得出函数解析式,最后求出即可.【详解】解:,又因为定义在上的奇函数,则,则,又因为,所以,,所以.故答案为:【点睛】本题考查三角函数的化简,三角函数的奇偶性和三角函数求值,考查了基本知识的应用能力和计算能力,是基础题.16.【解析】

令,则,恰有四个解.由判断函数增减性,求出最小值,列出相应不等式求解得出的取值范围.【详解】解:令,则,恰有四个解.有两个解,由,可得在上单调递减,在上单调递增,则,可得.设的负根为,由题意知,,,,则,.故答案为:.【点睛】本题考查导数在函数当中的应用,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)详见解析;(Ⅱ)①;②数学期望为6,方差为2.4.【解析】

(1)完成列联表,由列联表,得,由此能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关.(2)①由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,由此能选取的3人中至少有2人经常网购的概率.②由列联表可知,抽到经常网购的市民的频率为:,由题意,由此能求出随机变量的数学期望和方差.【详解】解:(1)完成列联表(单位:人):经常网购偶尔或不用网购合计男性5050100女性7030100合计12080200由列联表,得:,∴能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关.(2)①由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,∴选取的3人中至少有2人经常网购的概率为:.②由列联表可知,抽到经常网购的市民的频率为:,将频率视为概率,∴从我市市民中任意抽取一人,恰好抽到经常网购市民的概率为0.6,由题意,∴随机变量的数学期望,方差D(X)=.【点睛】本题考查独立检验的应用,考查概率、离散型随机变量的分布列、数学期望、方差的求法,考查古典概型、二项分布等基础知识,考查运算求解能力,是中档题.18.(1);(2)列联表见解析,有超过的把握认为“晋级成功”与性别有关;(3)分布列见解析,=3【解析】

(1)由频率和为1,列出方程求的值;(2)由频率分布直方图求出晋级成功的频率,计算晋级成功的人数,填写列联表,计算观测值,对照临界值得出结论;(3)由频率分布直方图知晋级失败的频率,将频率视为概率,知随机变量服从二项分布,计算对应的概率值,写出分布列,计算数学期望.【详解】解:(1)由频率分布直方图各小长方形面积总和为1,可知,解得;(2)由频率分布直方图知,晋级成功的频率为,所以晋级成功的人数为(人),填表如下:晋级成功晋级失败合计男163450女94150合计2575100假设“晋级成功”与性别无关,根据上表数据代入公式可得,所以有超过的把握认为“晋级成功”与性别有关;(3)由频率分布直方图知晋级失败的频率为,将频率视为概率,则从本次考试的所有人员中,随机抽取1人进行约谈,这人晋级失败的概率为0.75,所以可视为服从二项分布,即,,故,,,,.所以的分布列为:01234数学期望为.或().【点睛】本题考查了频率分布直方图和离散型随机变量的分布列、数学期望的应用问题,属于中档题.若离散型随机变量,则.19.(1)降低(2)【解析】

(1)计算出罚金定为10元时行人闯红灯的概率,和不进行处罚时行人闯红灯的概率,求解即可;(2)闯红灯的市民有80人,其中类市民和类市民各有40人,根据分层抽样法抽出4人依次排序,计算所求的概率值.【详解】解:(1)当罚金定为10元时,行人闯红灯的概率为;不进行处罚,行人闯红灯的概率为;所以当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低;(2)由题可知,闯红灯的市民有80人,类市民和类市民各有40人故分别从类市民和类市民各抽出两人,4人依次排序记类市民中抽取的两人对应的编号为,类市民中抽取的两人编号为则4人依次排序分别为,,,,,,,,,,,,共有种前两位均为类市民排序为,,有种,所以前两位均为类市民的概率是.【点睛】本题主要考查了计算古典概型的概率,属于中档题.20.(1),乙公司影响度高;(2)见解析,【解析】

(1)利用各小矩形的面积和等于1可得a,由导游人数为40人可得b,再由总收人不低于40可计算出优秀率;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论