2018年新版初级中级电工基础知识合集大全_第1页
2018年新版初级中级电工基础知识合集大全_第2页
2018年新版初级中级电工基础知识合集大全_第3页
2018年新版初级中级电工基础知识合集大全_第4页
2018年新版初级中级电工基础知识合集大全_第5页
已阅读5页,还剩122页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

/目录第一章直流电路 5§1—1电学的基本物理量 5一、电量 5二、电流 5三、电压 6四、电动势、电源 7五、电阻 7六、电功、电功率 8七、电流的热效应 10§1—2电路 11一、电路的组成和作用 11二、电路图 11三、电路的三种状态 12§1—3欧姆定律 12一、一段电阻电路的欧姆定律 12二、全电路欧姆定律 13§1—4电阻的串联、并联电路 14一、电阻的串联电路 14二、电阻的并联电路 16§1—5电工测量基本知识 17一、万用表的外形及基本组成 18二、万用表的使用步骤 20三、万用表的使用注意事项 20习题 20第二章电磁的基本知识 22§2—1磁的基本知识 22一、磁现象 22二、磁场、磁感应线 22三、磁通、磁感应强度 23四、磁导率 24§2—2电流的磁场 25一、通电直导线的磁场 25二、通电螺线管的磁场 25三、磁场对载流直导线的作用 26四、磁场对通电线圈的作用 27§2—3电磁感应 27一、电磁感应现象 27二、法拉第定律 29三、楞次定律 29四、电磁感应定律 31§2—4自感、互感 31一、自感 31二、互感 32习题 33第三章正弦交流电路 34§3—1正弦交流电的产生 35一、正弦交流电的特点种 35二、正弦交流电的产生 35§3—2正弦交流电的三要素 37一、周期、频率、角频率 37二、瞬时值、最大值、有效值 38三、相位、初相和相位差 39§3—3正弦交流电的表示法 40一、三角函数式法 41一、纯电阻电路 42二、纯电感电路 42三、纯电容电路 44§3—5三相交流电路 46一、三相电动势的产生 46二、三相电源绕组的联结 47三、三相交流电路负载的联结 48§3—6常用电气照明电路 50一、白炽灯照明电路 50二、节能灯照明电路 51三、日光灯照明电路 51习题 52第四章变压器及三相异步电动机 54§4—1变压器的基本结构和工作原理 54一、变压器的基本结构 55二、变压器的工作原理 56三、几种常见变压器 58四、变压器的主要技术数据 59五、变压器的使用要点 60§4—2三相异步电动机的用途和结构 60一、电动机概述 60二、三相笼式异步电动机的基本结构 61§4—3三相异步电动机的转动原理 62一、演示实验 62二、定子旋转磁场的产生 62三、旋转磁场对转子的作用 64§4—3三相异步电动机的使用 65一、启动 65二、反转 66三、制动 66四、三相笼式异步电动机的铭牌数据 67五、三相异步电动机使用要点 68§4—5单相异步电动机 69第五章简单机床电路 71§5—1常用低压电器 72一、开关 72二、接触器 75三、热继电器 76四、熔断器 76§5—2机床的几种控制线路 78一、点动控制线路 78二、看懂机床控制线路的基本要领 78三、接触器自锁控制线路 79四、接触器联锁的正反转控制线路 81五、C620—1型车床控制线路 83习题 84第六章安全用电 85§6—1触电 85一、触电事故 85二、触电原因及方式 86§6—2安全用电措施 87一、常用安全用电措施 87二、电气设备的保护接地和保护接零 88三、安全用电十不准 89§6—3电气事故及紧急处理 90一、触电急救 90二、对电气设备做好监护 90三、电火警的紧急处理 91四、防雷击的安全措施 91习题 92第一章直流电路本章学习要点:1.熟悉电流、电压、电阻、电功率、电功等常用的物理量;2.了解常用电气元件的电路符号,能够看懂电路图的连接关系;3.熟练掌握欧姆定律的两种形式,明确U,J,R,E,r之间的关系;4.准确辨识简单电路电阻的串、并联关系,掌握两种连接形式中每个元件上电压、电流及总电压、总电流的关系。现实生活中,我们经常听到或说起很多有关电方面的名词、术语,也经常有很多用电方面的困惑。这些名词、术语究竟是怎样定义的?它们之间有什么关系?是什么因素导致电压的高低、电流的大小?为什么会发生由用电引发的火灾?为什么家里几个月没人住,还会产生电费?很多经常听到的,看似简单,又不容易说清的问题,通过本章的学习都会有明确的答案。§1—1电学的基本物理量一、电量自然界中的一切物质都是由分子组成的,分子又是由原子组成的,而原子是由带正电荷的原子核和一定数量带负电荷的电子组成的。在通常情况下,原子核所带的正电荷数等于核外电子所带的负电荷数,原子对外不显电性。但是,用一些办法,可使某种物体上的电子转移到另外一种物体上。失去电子的物体带正电荷,得到电子的物体带负电荷。物体失去或得到的电子数量越多,则物体所带的正、负电荷的数量也越多。物体所带电荷数量的多少用电量来表示。电量是一个物理量,它的单位是库仑,用字母C表示。1C的电量相当于物体失去或得到6.25×1018个电子所带的电量。二、电流电荷的定向移动形成电流。电流有大小,有方向。1.电流的方向1、人们规定正电荷定向移动的方向为电流的方向。金属导体中,电流是电子在导体内电场的作用下定向移动的结果,电子流的方向是负电荷的移动方向,及正电荷的移动方向相反,所以金属导体中电流的方向及电子流的方向相反,如图1—1所示。2.电流的大小电学中用电流强度来衡量电流的大小。电流强度就是l秒钟通过导体截面的电量。电流强度用字母表示,计算公式如下:式中——电流强度,单位安培(A);——在t秒时间内,通过导体截面的电量数,单位库仑(C);——时间,单位秒(s)。实际使用时,人们把电流强度简称为电流。电流的单位是安培,简称安,用字母A表示。如果1秒内通过导体截面的电量为1库仑,则该电流的电流强度为1安培,习惯简称电流为1安。实际应用中,除单位安培外,还有千安()、毫安()和微安()。它们之间的关系为:三、电压为了弄清楚电荷在导体中定向移动而形成电流的原因,我们对照图1—2a水流的形成来理解这个问题。从图1—2a可以看到外水由一A槽经C管向8槽流去。水之所以能在C管中进行定向移动,是由于A槽水位高,B槽水位低所致:A,B两槽之间的水位差即水压,是实现水形成水流的原因。及此相似,当图1—2b中的开关S闭合后,电路里就有电流。这是因为电源的正极电位高,负极电位低。两个极间电位差(电压)使正电荷从正极出发,经过负载R移向负极形成电流。所以,电压是自由电荷发生定向移动形成电流的原因。在电路中电场力把单位正电荷由高电位a点移向低电位b点所做的功称为两点间的电压,用表示。所以电压是a及b两点间的电位差,它是衡量电场力做功本领大小的物理量。电压用字母U表示,单位为伏特,电场力将1库仑电荷从a点移到b点所做的功为1焦耳,则ab间的电压值就是1伏特,简称伏,用字母V表示。常用的电压单位还有千伏(kV),毫伏(mV)等。它们之间的关系为:1kV=VlV=mV电压及电流相似,不但有大小,而且有方向。对于负载来说,电流流人端为正端,电流流出端为负端。电压的方向是由正端指向负端,也就是说负载中电压实际方向及电流方向一致。在电路图中,用带箭头的细实线表示电压的方向。四、电动势、电源在图1—2a中,为使水在C管中持续不断地流动,必须用水泵把B槽中的水不断地泵入A槽,以维持两槽间的固定水位差,也就是要保证C管两端有一定的水压。在图1—2b中,电源及水泵的作用相似,它把正电荷由电源的负极移到正极,以维持正、负极间的电位差,即电路中有一定的电压使正电荷在电路中持续不断地流动。电源是利用非电力把正电荷由负极移到正极的,它在电路中将其他形式能转换成电能。电动势就是衡量电源能量转换本领的物理量,用字母E表示,它的单位也是伏特,简称伏,用字母V表示。电源的电动势只存在于电源内部。人们规定电动势的方向在电源内部由负极指向正极。在电路中也用带箭头的细实线表示电动势的方向,如图1—2b所示。当电源两端不接负载时,电源的开路电压等于电源的电动势,但二者方向相反。生活中用测量电源端电压的办法,来判断电源的状态。比如测得工作电路中两节5号电池的端电压为2.8V,则说明电池电量比较充足。五、电阻一般来说,导体对电流的阻碍作用称为电阻,用字母R表示。电阻的单位为欧姆,简称欧,用字母表示。如果导体两端的电压为1伏,通过的电流为1安,则该导体的电阻就是1欧。常用的电阻单位还有千欧(k)、兆欧(M)。它们之间的关系为:1k=1M=k应当强调指出:电阻是导体中客观存在的,它及导体两端电压变化情况无关,即使没有电压,导体中仍然有电阻存在。实验证明,当温度一定时,导体电阻只及材料及导体的几何尺寸有关。对于二根材质均匀、长度为L、截面积为S的导体而言,其电阻大小可用下式表示:式中——导体电阻,单位为欧();——导体长度,单位为米(m);——导体截面积,单位为平方毫米();——电阻率,单位为欧·米(·m)。式中电阻率是及材料性质有关的物理量。电阻率的大小等于长度为1m,截面积为1的导体在一定温度下的电阻值,其单位为欧米(:m)。例如,铜的电阻率为1.7×·m,就是指长为1m,截面积为1mmz的铜线的电阻是1.7×。几种常用材料在20时的电阻率见表1—1。从表中可知,铜和铝的电阻率较小,是应用极为广泛的导电材料。以前,由于我国铝的矿藏量丰富,价格低廉,常用铝线作输电线。由于铜线有更好的电气特性,如强度高、电阻率小,现在铜制线材被更广泛应用。电动机、变压器的绕组一般都用铜材。表1—1几种常用材料在20℃材料名称电阻率(·m)银1.6×铜1.7×铝2.9×钨5.3×铁1.0×康铜5.0×锰铜4.4×铝铬铁电阻丝1.2×六、电功、电功率电流通过用电器时,用电器就将电能转换成其他形式的能,如热能、光能和机械能等。我们把电能转换成其他形式的能叫做电流做功,简称电功,用字母W表示。电流通过用电器所做的功及用电器的端电压、流过的电流、所用的时间和电阻有以下的关系:如果公式(1—3)中,电压单位为伏,电流单位为安,电阻单位为欧,时间单位为秒,则电功单位就是焦耳,简称焦,用字母J表示。电流在单位时间内通过用电器所做的功称为电功率,用字母P表示。其数学表达式为:将公式(1—3)代入公式1—4后得到:若在公式(1—4)中,电功单位为焦耳,时间单位为秒,则电功率的单位就是焦耳/秒。焦耳/秒又叫瓦特,简称瓦,用字母W表示。在实际工作中,常用的电功率单位还有千瓦(kW)、毫瓦(mW)等。它们之间的关系为:1kW=W1W=mW从公式1—5中可以得出如下结论:1.当用电器的电阻一定时,电功率及电流平方或电压平方成正比。若通过用电器的电流是原来电流的2倍,则电功率就是原功率的4倍;若加在用电器两端电压是原电压的2倍,则电功率就是原功率的4倍。2.当流过用电器的电流一定时,电功率及电阻值成正比。对于串联电阻电路,流经各个电阻的电流是相同的,则串联电阻的总功率及各个电阻的电阻值的和成正比。3.当加在用电器两端的电压一定时,电功率及电阻值成反比。对于并联电阻电路,各个电阻两端电压相等,则各个电阻的电功率及各电阻的阻值成反比。在实际工作中,电功的单位常用千瓦小时(kW·h),也叫“度”。1千瓦小时是1度,它表示功率为1千瓦的用电器1小时所消耗的电能,即:1kW·h=1kW×1h=3.6×J例题1一台42英寸(1英寸=2.54厘米)等离子电视机的功率约为300W,平均每天开机3小时,若每度电费为人民币0.48元,问一年(以解:电视机的功率P=300W=0.3kW电视机一年开机的时间t=3×365=1095h电视机一年消耗的电能W=Pt=0.3×1095=328.5kW·h一年的电费为328.5×0.48=157.68元想一想:现在的电气在不工作时经常是通电的,(待机状态),此时的功耗很低,一般不超过10W(计算时可以估算为5W),假定家中有空调、电视机、DVD播放器、家庭影院功放、计算机主机、计算机显示器,如果这些电气长期处在待机状态,它们一年要消耗多少电费?有没有其他问题?七、电流的热效应电流通过导体使导体发热的现象叫做电流的热效应。电流的热效应是电流通过导体时电能转换成热能的效应。电流通过导体产生的热量,用焦耳一楞次定律表示如下:式中——热量,单位焦耳(J);——通过导体的电流,单位安培(A);——导体电阻,一单位欧姆();——导体通过电流的时间,单位秒(S)焦耳一楞次定律的物理意义是:电流通过导体所产生的热量,及电流强度的平方、导体的电阻及通电时间成正比。在生产和生活中,应用电流热效应制作各种电气。如白炽灯、电烙铁、电烤箱、熔断器等在工厂中最为常见;电吹风、电褥子等常用于家庭中。但是电流的热效应也有其不利的一面,如电流的热效应能使电路中不需要发热的地方(如导线)发热,导致绝缘材料老化,甚至烧毁设备,导致火灾,是一种不容忽视的潜在祸因。例题2已知当一台电烤箱的电阻丝流过5A电流时,每分钟可放出1.2×J的热量,求这台电烤箱的电功率及电阻丝工作时的电阻值。解:根据公式(1—4),电烤箱的电功率为:电阻丝工作时电阻值为:§1—2电路一、电路的组成和作用电流所流过的路径称为电路。它是由电源、负载、开关和连接导线等4个基本部分组成的,如图1—3所示。电源是把非电能转换成电能并向外提供电能的装置。常见的电源有干电池、蓄电池和发电机等。负载是电路中用电器的总称,它将电能转换成其他形式的能。如电灯把电能转换成光能;电烙铁把电能转换成热能;电动机把电能转换成机械能。开关属于控制电器,用于控制电路的接通或断开。连接导线将电源和负载连接起来,担负着电能的传输和分配的任务。电路电流方向是由电源正极经负载流到电源负极,在电源内部,电流由负极流向正极,形成一个闭合通路。二、电路图在设计、安装或维修各种实际电路时,经常要画出表示电路连接情况的图。如果是画如图1—3所示的实物连接图,虽然直观,但很麻烦。所以很少画实物图,而是画电路图。所谓电路图就是用国家统一规定的符号,来表示电路连接情况的图。表1—2是几种常用的电工符号。图1—4是图1—3的电路图。表1—2几种常用的电工符号名称符号名称符号电池电流表导线电压表开关熔断器电阻电容照明灯接地三、电路的三种状态电路有三种状态:即通路、开路、短路。通路是指电路处处接通。通路也称为闭合电路,简称闭路。只有在通路的情况下,电路才有正常的工作电流开路是电路中某处断开,没有形成通路的电路。开路也称为断路,此时电路中没有电流;短路是指电源或负载两端被导线连接在一起,分别称为电源短路或负载短路。电源短路时电源提供的电流要比通路时提供的电流大很多倍,通常是有害的,也是非常危险的,所以一般不允许电源短路。§1—3欧姆定律一、一段电阻电路的欧姆定律所谓一段电阻电路是指不包括电源在内的外电路,如图1—5所示。实验证明,二段电阻电路欧姆定律的内容是,流过导体的电流强度及这段导体两端的电压成正比;及这殷导体的电阻成反比。其数学表达式为:式中——导体中的电流,(A);——导体两端的电压,(V);——导体的电阻,()。在公式(1—7)中,已知其中两个量,就可以求出第三个未知量;公式(1—7)又可写成另外两种形式:1.已知电流、电阻,求电压:2.已知电压、电流,求电阻:例题3一台直流电动机励磁绕组在220V电压作用下,通过绕组的电流为0.427解:已知电压U=220V,电流I=0.427A,由公式(1—二、全电路欧姆定律全电路是指含有电源的闭合电路。全电路是由各段电路连接成的闭合电路。如图1—6所示,电路包括电源内部电路和电源外部电路,电源内部电路简称内电路,电源外部电路简称外电路。在全电路中,电源电动势、电源内电阻、外电路电阻和电路电流之商的关系为:式中——电路中的电流,(A);——电源电动势,(V);——外电路电阻,();——内电路电阻,()。公式(1—10)是全电路欧姆定律。定律说明电路中的电流强度及电源电动势()成正比,及整个电路的电阻()成反比。将公式(1—10)变换后得到:式中——外电路电压;——内电路电压。外电路电压是指电路接通时电源两端的电压,又叫做路端电压,简称端电压。这样,公式(1—11)的含义又可叙述为:电源电动势在数值上等于闭合回路的各部分电压之和。根据全电路欧姆定律研究全电路处于三种状态时,全电路中电压及电流的关系是:1.当全电路处于通路状态时,由公式(1—11)可以得出端电压为:由公式可知,随着电流的增大,外电路电压也随之减小。电源内阻越大,外电路电压减小得越多。在直流负载时需要恒定电压供电,所以总是希望电源内阻越小越好。2.当全电路处于断路状态时,相当于外电路电阻值趋于无穷大,此时电路电流为零,开路内电路电阻电压为零,外电路电压等于电源电动势。3.当全电路处于短路状态时,外电路电阻值趋近于零,此时电路电流叫短路电流。由于电源内阻很小,所以短路电流很大。短路时外电路电压为零,内电路电阻电压等于电源电动势。全电路处于三种状态时,电路中电压及电流的关系见表1—3。表1—3电路中电压及电流的关系电路状态负载电阻电路电流外电路电压通路=常数开路短路0通常电源电动势和内阻在短时间内基本不变,且电源内阻又非常小,所以可近似认为电源的端电压等于电源电动势。今后不特别指出电源内阻时,就表示其阻值很小忽略不计。但对于电池来说,其内阻随电池使用时间延长而增大。如果电池内阻增大到一定值时,电池的电动势就不能使负载正常工作了。如旧电池开路时两端的电压并不低,但装在收音机里,却不能使收音机发声,这是由于电池内阻增大所致。例题4如图1一6所示的电路。电源电动势=24V,电源内阻=-4,负载电阻=20。求电路中的电流,电源的端电压,负载电压和电源内阻电压。解:根据公式(1—10),电路中的电流:由公式(1一11),电路中电源的端电压:根据公式(1—8),电路中的负载电压:根据公式(1一8),电路中电源内阻的电压:§1—4电阻的串联、并联电路一、电阻的串联电路在一段电路上,将几个电阻的首尾依次相连所构成的一个没有分支的电路,叫做电阻的串联电路。如图1—7a所示是电阻的串联电路。图1—7b是图1—7a的等效电路。电阻的串联电路有以下特点:1.串联电路中流过各个电阻的电流都相等,即:…2.串联电路两端的总电压等于各个电阻两端的电压之和,即:…3.串联电路的总电阻(即等效电阻)等于各串联的电阻之和,即:…根据欧姆定律得出,,,…,可以得出:…或者此公式表明,在串联电路中,龟阻的阻值越大,这个电阻所分配到的电压越大;反之,电压越小,即电阻上的电压分配及电阻的阻值成正比。这个理论是电阻串联电路中最重要的结论,用途极其广泛。比如,用串联电阻的办法来扩大电压表的量程:在如图1—7a所示的,电路中,将代人公式(1—14)式中这两个公式可以直接计算出每个电阻从总电压中分得的电压值,习惯上就把这两个式子叫做分压公式。电阻串联的应用极为广泛。例如:(1)用几个电阻串联来获得阻值较大的电阻。(2)用串联电阻组成分压器,使用同一电源获得几种不同的电压。如图1—8所示,由R1~R4组成串联电路,使用同一电源,输出4种不同数值的电压。(3)当负载的额定电压(标准工作电压值)低于电源电压时,采用电阻及负载串联的方法,使电源的部分电压分配到串联电阻上,以满足负载正确的使用电压值。例如,一个指示灯额定电压6V,电阻6,若将它接在12V电源上,必须串联一个阻值为6的电阻,指示灯才能正常工作。(4)用电阻串联的方法来限制调节电路中的电流。在电工测量中普遍用串联电阻法来扩大电压表的量程。二、电阻的并联电路将两个或两个以上的电阻两端分别接在电路中相同的两个节点之间,这种连接方式叫做电阻的并联电路。如图1—9a所示是电阻的并联电路,图1—9b是图1—9a的等效电路。电阻的并联电路有如下特点:1.并联电路中各个支路两端的电压相等,即:…2.并联电路中总的电流等于各支路中的电流之和,即:…3.并联电路的总电阻(即等效电阻)的倒数等于各并联电阻的倒数之和,即:…若是两个电阻并联,根据公式1—18可求并联后的总电阻为:根据公式(1—l6)及欧姆定律可以得出:公式(1—20)表明,在并联电路中,电阻的阻值越大,这个电阻所分配到的电流越小,反之越大,即电阻上的电流分配及电阻的阻值成反比。这个结论是电阻并联电路特点的重要推论,用途极为广泛,比如,用并联电阻的办法,扩大电流表的量程。电阻并联的应用,同电阻串联的应用一样,也很广泛。例如:(1)因为电阻并联的总电阻小于并联电路中的任意一个电阻,因此,可以用电阻并联的方法来获得阻值较小的电阻。(2)由于并联电阻各个支路两端电压相等,因此,工作电压相同的负载,如电动机、电灯等都是并联使用,任何一个负载的工作状态既不受其他负载的影响,也不影响其他负载。在并联电路中,负载个数增加,电路的总电阻减小,电流增大,负载从电源取用的电能多,负载变重;负载数目减少,电路的总电阻增大,电流减小,负载从电源取用的龟能少,负载变轻。因此,人们可以根据工作需要启动或停止并联使用的负载。(3)在电工测量中应用电阻并联方法组成分流器来扩大电流表的量程。§1—5电工测量基本知识自然界中的物理量,都可以使用特定的工具来进行测量。测量各种电量的仪器仪表,统称为电工测量仪表。电工测量仪表种类繁多,最常见的是测量基本电量的仪表。电工仪表依据测量方法、仪表结构、仪表用途来分,有很多种。概括来说,电工仪表用来测量电路中的电流、电压、电功率、电功、功率因数、电量的频率{电阻、绝缘状况等物理量。由此就有用各种被测物理量冠名的仪表,如电流表、电压表等。其中一些电量要在后续课程中介绍。本书简单介绍电工应用中最常用的仪表——万用表。万用表是一种便携式仪表。由于其能够测量交流、直流电压或电流参数:以及电路中的电阻等;被称为万用表。根据万用表内部结构、工作原理的不同,可以把万用表分为:机械指针式万用表(简称机械表)笼和电子数显式万用表(简称电子表)两类。本节重点介绍机械表。一、万用表的外形及基本组成如图1-10所示,是机械指针式万用表的外形。操作万用表的主要部分有三个:挡位拨盘、表笔、读数表头。万用表除了这几部分外,最主要的是表内电路和表头机电基本体模块部分。万用表的表壳部分承担着各部分的保护及承载的责任。由于万用表是一种移动测量仪表,容易受到磕碰摔砸的损害,所以应注意防护:1.挡位拨盘如图1—11所示,用于选择测量哪种物理量,一般万用表都至少设有如下四个挡位,每个挡位又分为几个不同量限或不同倍率的挡位:交流电压挡:测量交流电压,如图1—11所示,又分为10V,50V,250V,500V,1000V五个子挡位。直流电压挡:测量直流电压,如图1—11所示,又分为0.25V,2.5V,10V,50V,250V,500V六个子挡位。直流电流挡:用于测量直流电流值,如图1—11所示,又分为1mA,10mA,100mA,1000mA四个子挡位。电阻挡:用于测量电器阻值,如图1—11所示,又分为×1,×10,×l00,×1k四个子挡位。电压、电流的每个挡位的数值表示的是量限(或量程),待测的物理量值应小于该值。在选择挡位时,要选择一个挡位量限大于被测量值,并且及被测量值最接近的一个量限的挡位。比如,要测一个直流电压,估计其值约为190V,则应选择直流250V挡位。此时挡位值250V大于被测量190V,且250V挡位比500V,1000V两个挡位更接近被测量值。这样选择既能保证万用表的安全,又能保证测量精度。机械表电阻挡的几个挡位表示几个不同的倍率。由于机械表的表头指针在整个刻度的20%~80%之间,读数比较准确,尤其是电阻挡位对应的表头刻度的非均匀性,在这个范围内更利于读取数值,所以,利用电阻挡的倍率选择,可以使表头指针落在该范围内。电子表电阻挡位的标示数值及电流、电压的数值一样,表示量限,不是倍率。电子表的挡位选择方法及电流、电压挡位一样。2.表头如图1—12所示为万用表表头。机械表头有若干条刻度线:刻度线1是电阻值读取线,指针指向最右端,指示值为0;指针指向最左端,指示值为。注意被测电阻的实际阻值是指示值及所选挡位的倍率的乘积。比如,在R×1k挡,当从刻度线上读取35时,如图1—13所示,电阻的测量阻值为35×1k=35k;刻度线2是均匀刻度线,用于读取电压、电流的指示值。被测对象的测量值也经常需要从读取值换算而得到。比如使用直流电压500V挡,按50刻度线读数,如果读取值为43,如图1一14所示,则被测电压的测量值为43×(500+50)=430V;如果按250刻度线读数,见刻度线,读数应为215,则被测电压的测量值为215×(500÷250)=430V,即从同二类的刻度线读数,经过换算,得到的测量值是一样的。机械表头经常还有其他一些刻度线,请参照有关书籍。电子表头的读数比较简单,可直接读数,然后冠以所选挡位的单位,即是被测对象的测量值。比如使用电流20mA挡,读数值为15.5,则测量值为l5.5mA。3.表笔万用表的两表笔一般使用红黑两种颜色,红表笔一般插在标有“十”的插孔内,黑表笔一般插在标有“一”的插孔内。测量电压时,红、黑表笔分别接在高、低电位端;测量电流时,红、黑表笔分别接在电流的流入端和流出端。否则表针会反向打针,对万用表不利。二、万用表的使用步骤1.确认万用表的状态,保证各部分的功能正常可靠。2.明确要测量的物理量。一般包括交流电压、直流电压、直流电流和电阻器阻傅。3.选择合适的挡位,如前所述。4.适当接人被测对象。测量电压时,直接将红、黑表笔并接在被测元件的高、低电位两端或电路中的高、低电位点上。测量电流时,须断开被测电路,将红、黑表笔接八电路的电流流出、流入端,使电流经红表笔流入表内,从黑表笔流出时测量电阻器阻值时,电阻器须脱离电路,然后将表笔两端接在电阻器两端测量即可。5.获取测量值。读取刻度值,并进行必要的换算及冠以单位,如前所述。6.测量值的分析。对测得值要进行确认,是否合理,是否具备科学性。三、万用表的使用注意事项1.万用表是便携式仪表,本身精度不高,可能有5%以内的误差。2.测量电阻时,首先要进行电阻值调零,方法是将表笔短接,使用万用表面板上的调零钮进行调整。3.注意检查万用表内的电池,当电量不足时,会影响电阻的测量。4.万用表最容易发生的损坏是,当万用表处在电流挡时,测量电压,此时极易永久性损坏内部电路及表头。避免的办法是,每次用完万用表,都将挡位置于交流电压最高挡(一般为1000V)。习题1.电流是用来表示_________的物理量,常用的单位是_________。2.电阻是用来表示_________的物理量,常用的单位是_________。3.电压是用来表示_________的物理量,常用的单位是_________。4.分别用公式来表示下面各组量之间的关系:(1)电量、电流、时间(2)电流、电压、电阻(3)电功、电功率、时间5.电流通过导体的发热现象叫__________,发热的多少及_________的平方成正比,及电阻的阻值成_________,及时间成正比,这个关系写成公式是__________。6.导体中电流的方向规定是__________的方向。电流方向及电子流方向___________。7.简单描述电路各组成部分的作用。8.画图表示电路的3种状态。9.镍铬电炉丝的电阻率是1.1×·m,炉丝截面积0.6。如果将电炉接在220V的电源上,使炉丝通过3A的电流,应选用多长的电炉丝?10.有两只灯泡,一只110V110W,另一只110V60W,试问哪只灯泡的电阻大?若将两只灯泡串联接在220V的线路中,是否可以正常使用,通电后有什么现象。11.有3个电阻=5,=3,=2,串联后接在12V的电源上,求电路中的电流,各电阻上的电压。12.有两只220V的灯泡,一只15W,另一只25W,并联接在220V电源上。求电路的等效电阻、总电流和各灯泡流过的电流。13.有60W,40W,20W三只220V的灯泡,要接在220V电源上正常使用,应采取哪种连接方式?画出电路图。14.将两只220V60W的灯泡串联接入220V电路中,每只灯泡实际消耗的电功率是多少?灯泡的寿命有何变化?这种情况是否可以应用到实际生活中(举例说明)?15.简单叙述电工技术中广泛使用铜材料的原因。16.列举几项节电方法。17.万用表一般有__________和__________两种类型,一般万用表可用来测量__________、__________和__________三种物理量。18.万用表最容易发生的永久损坏是当万用表处于__________挡位时,被用来测量19.用万用表测量电阻时,要先对万用表进行__________操作。20.使用万用表测量交、直流电压、电流。第二章电磁的基本知识本章学习要点:1.熟悉磁的特性及磁的表示方法,熟悉磁通、磁感应强度、磁导率的概念以及铁磁材料的特点。2.熟悉电生磁、-磁生电及磁对电流的力的作用的三个现象,了解三个现象方向判定关系,定性掌握磁场对电流的力的作用规律。3。熟悉自感、互感现象,了解典型应用和避害知识。人们的生活因为有了电而便捷、精彩、时尚。人们总爱假想“如果有一天,这个世界突然没了电……”,可是,如果这个世界没有了磁,会怎样呢?实际上电及磁有着密不可分的关系。正因为有了这个关系,我们才有了电、电灯、电视、电话、计算机、电动机……,同时一也因为这个关系,导致了我们的电气寿命的短暂,突发故障的不约而至。你想知道这是什么原因吗?§2—1磁的基本知识一、磁现象早在2000多年前,我们的祖先就发现了磁铁矿石具有吸引铁的性质。人们把物体能够吸引铁、钻、镍及其合金的性质称为磁性,把具有磁性的物体叫做磁体。磁体上磁性最强的位置称为磁极,磁体有两个磁极:即南极和北极,通常用字母S表示南极(常涂红色),用字母N表示北极(常涂绿色或白色)。条形、蹄形、针形磁铁的磁极位于它们的两端。值得注意的是任何一个磁体的磁极总是成对出现的。若把一个条形磁铁分割成若干段,则每段都会同时出现南极、北极。这叫做磁极的不可分割性。磁极及磁极之间存在的相互作用力称为磁力:?其作用规律是同性磁极相斥,异性磁极相吸。一根没有磁性的铁棒,在其他磁铁的作用下获得磁性的过程叫磁化。如果把磁铁拿走,铁棒仍有的磁性则称为剩磁。二、磁场、磁感应线磁体周围存在磁力作用的空间称为磁场。我们经常看见两个互不接触的磁体之间具有相互作用力,它们是通过磁场这一特殊物质进行传递的。磁场之所以是一种特殊物质,是因为它不是由分子和原子等粒子组成的。虽然磁场是一种看不见、摸不着的特殊物质,但通过实验可以证明它的存在。例如,在一块玻璃板上均匀地撒些铁粉,在玻璃板下面放置一个条形磁铁。铁粉在磁场的作用下排列成规则线条,如图2—1所示。这些线条都是从磁铁的。N极到S极的光滑曲线,如图2一1b所示。我们把这些曲线称为磁感应线,用它能形象描述磁场的性质。实验证明磁感应线具有下列特点:1.磁感应线是闭合曲线在磁体外部,磁感应线从N极出发,然后回到S极,在磁体内部,是从S极到N极,这叫做磁感应线的不可中断性,如图2—2所示。2.磁感应线互不相交这是因为磁场中任何一点磁场方向只有一个。3.磁感应线的疏密程度及磁场强弱有关。磁感应线稠密表示磁场强,-磁感应线稀疏表示磁场弱。三、磁通、磁感应强度为了描述磁场在上定面积上的分布情况而引入了磁通这一物理量。在磁场中,把通过及磁场方向垂直的某一面积的磁感应线的总数目,叫做通过该面积的磁通,用字母表示。磁通的单位是韦伯“简称韦,用Wb表示。磁感应强度是用来表示磁场中各点磁场强弱和方向的物理量,用字母B表示。垂直通过单位面积的磁感应线的数目叫做该点的磁感应强度。它既有大小,又有方向。在磁场中某点磁感应强度的方向,就是位于该点磁针北极所指的方向,它的大小在均匀磁场中可表示为:式中—一磁感应强度(T);——磁通(Wb);——垂直于磁感应线方向通过磁感应线的面积()。公式(2—1)说明磁感应强度的大小等于单位面积的磁通。如果通过单位面积的磁通越多,则磁感应线越密,磁场也越强,反之磁场越弱。磁感应强度的单位是韦/米,称为特斯拉,简称特,用字母T表示。四、磁导率实验证明,铁、钻、镍及其合金对磁场影响强烈,具有明显的导磁作用。但是自然界绝大多数物质对磁场影响甚微,导磁作用很差。为了衡量各种物质导磁的性能,引入磁导率这一物理量,用字母表示。磁导率的单位为亨利/米(H/m)。不同物质有不同的磁导率。在其他条件相同的情况下,某些物质的磁导率比真空中的强,另一些物质的磁导率比真空中的弱。经实验测得真空的磁导率为,且是常数。为了便于比较各种物质的导磁性能,把各种性质的磁导率及真空中的磁导率进行比较,引人相对磁导率这一物理量。任何一种物质的磁导率及真空的磁导率的比值叫做相对磁导率,用以表示。即:相对磁导率没有单位,只是说明在其他条件相同的情况下,物质的磁导率是真空磁导率的多少倍。根据各种物质的磁导率的大小,可将物质分成三类。<1的物质叫做反磁物质,如铜、银等;>1的物质叫做顺磁物质,如空气、铝等;>>1的物质叫做铁磁物质,如铁、钴、镍及其合金等。由于铁磁物质的相对磁导率很高,所以铁磁物质被广泛地应用于电工技术方面(如制作变压器、电磁铁。电动机的铁心等)。表2—1中列出了几种铁磁物质的相对磁导率,供参考。表2—1几种铁磁物质的相对磁导率铁磁物质名称相对磁导率钴174镍1120退火的铁7000软钢2180硅钢片7500镍铁合金60000坡莫合金115000§2—2电流的磁场一、通电直导线的磁场磁铁周围有磁场,通电直导线的周围也有磁场。例如,一根直导线垂直穿过水平放置的纸板,在纸板上均匀地撒些铁粉。当直导线通电时,铁粉以导线为中心形成许多同心圆,如图2—3所示:铁粉的分布情况表示磁感应线分布情况。若直导线中电流消失,则纸板上的铁粉又呈均匀分布。从而证明了“动电生磁”,即磁场是伴随电流而存在的,而电流永远被磁场所包围。经实验证明,磁场方向及电流方向有关。若直导线垂直纸面,电流向着读者而来,则磁场方向是逆时针方向;若直导线上的电流是离开读者而丢,则磁场方向为顺时针方向,如图2—4a所示:为了讨论问题方便起见;规定用符号,分别表示电流或磁感应线垂直进人和流出纸面的方向。通电直导线周围磁场方向及导线中的电流方向之间的关系可用安培定则(又称右手螺旋定则)进行判定。其具体内容是:右手拇指指向电流方向,贴在导线上,其余四指弯曲握住直导线,则弯曲四指的方向就是磁感应线的环绕方向;如图2—4b所示。实验证明,通电直导线四周的磁感应线距直导线越近,磁感应线越密,磁感应强度越大,反之,磁感应线越疏k磁感应强度越小。导线中通过电流越大,靠近直导线的磁感应线越密集,磁感应强度越大;反之,导线中通过电流越小,靠近直导线的磁感应线越稀疏,磁感应强度越小。二、通电螺线管的磁场已经知道通电直导线周围有磁场存在。若将通电直导线绕成多匝螺线管后,在它的周围还有磁场存在吗?为证实这个问题。将磁针放在螺线管附近科当螺线管不通电时,磁针没有偏转。当通电时,磁针发生偏转。这就说明通电螺线管周围有磁场存在。对于一个确定的螺线管,磁场的强弱及螺线管中所通过的电流大小成正比。通电螺线管磁场方向,及螺线管中通过的电流方向的关系,用右手螺旋定则进行判定,如图2—5所示。右手螺旋定则的内容是:用右手握住螺线管,让弯曲的四指所指的方向及螺线管中流过的电流方向一致,那么拇指所指的那一端就是螺线管的N极。由图2—5可知,通电螺线管的磁场及条形磁铁的磁场相似。因此,一个通电螺线管相当于一块条形磁铁。总之,凡是通电的导线,在其周围必定会产生磁场,从而说明电流及磁场之间有着不可分割的联系。电流产生磁场的这种现象叫做电流的磁效应。想一想:如果将一个铁磁性材料插入到线圈中,对线圈的磁场有什么影响?这一点会有什冬应用?三、磁场对载流直导线的作用通过前面学习已经知道,两块磁铁之间有力的作用一载流直导线周围也存在磁场,若将其放入磁场中,两者之间也会产生力,现在用如图2—6所示的实验来证实这一问题。在图2—6a中,U形磁铁中水平放置一根直导线,它及磁感应线垂直。当导线上没有电流通过时,导线在磁场里静止不动。当导线上有电流通过,且背离读者而去,则导线因受磁场作用而向左运动。若改变导线中的电流方向(见图2—6b),即电流方向指向读者,则导线受磁场作用向右运动。上述实验说明载流直导线在磁场的作用下而产生运动。在磁极固定时,运动方向及电流方向有关;若导线中电流方向不变,只改变磁极方向,则导线的运动方向也发生改变。电动机就是利用载流导线在磁场中产生运动的原理制成的。载流直导线在磁场作用下产生运动,而运动是在力的作用下产生的。载流直导线在磁场中所受到的力称为电磁作用力,简称电磁力,用字母F表示。电磁力既有大小,也有方向。电磁力方向(即导线运动方向)、电流方向和磁场方向三者相互垂直。因为电磁力的方向及磁场方向及电流方向有关。所以,用左手定则(又称电动机定则)来判定兰者之间的关系。左手定则的内容是:伸平左手,使大拇指及其余四指垂直,手心对着N极,让磁感应线垂直穿过手心,四指的指向代表电流方向,则大拇指所示的方向就是磁场对载流直导线的作用力方向,如图2—7所示。实验证明,在匀强磁场中,当载流直导线及磁场方向垂直时,磁场对载流直导线作用力的大小,及导线所处的磁感应强度、通过直导线的电流以及导线在磁场中的长度的乘积成正比。即:式中——磁感应强度(Wb/);——直导线中通过的电流(A);——直导线在磁场中的长度(m);——直导线受到的电场力(N)。四、磁场对通电线圈的作用由于磁场对通电导线有作用力,因此,磁场对通电线圈也有力的作用。在均匀磁场中放置一个矩形通电线圈abcd,如图2—8所示。当线圈平面及磁感应线平行时,因为ab和dc边及磁感应线平行,不受磁场作用,没有电磁力,ad和bc边及磁感应线垂直,受磁场作用而有电磁力。根据左手定则,ad边的受力方向是垂直向上,而bc边的受力方向是垂直向下。因为,ad=bc,根据公式(2—3),可知,ad和bc边所受的电磁力大小相等。由于这一对电磁力大小相等,方向相反,所以构成一对力偶。故线圈在力偶的作用下,围绕轴线做顺时针旋转。如图2—8所示是一个单匝线圈的直流电动机的工作原理图。§2—3电磁感应电和磁是可以互相转化的。在一定条件下,电流能够产生磁场;同样,磁场也能使导线中产生电流。:磁转化为电的现象叫做电磁感应。一、电磁感应现象为了研究电磁感应现象,先做两个实验。实验一:将直导线AB放在磁场中,它的两端及检流计连接构成闭合回路,如图2—6所示。当导线向右移动垂直切割磁感应线时,检流计指针偏转,如图2—9a所示,表示导线中有电流产生;导线向左方垂直移动切割磁感应线时,检流计指针也发生偏转,但方向及前面的相反;如图2—9b所示。导体不动,没有切割磁感应线时,检流计指针无偏转,说明导线中没有电流。通过实验可以看到,导线的移动速度越快,检流计指针偏转越大,即电流越大。实验二:将线圈的两端及一个检流计连接而构成闭合回路,如图2—10所示。当条形磁铁插入线圈瞬间,线圈中的磁通量增加,检流计指针向右偏转。如图2—10a所示,说明线圈中磁通发生变化,线圈中有电流出现。若把条形磁铁从线圈中拔出,在拔出瞬间,检流计指针向相反方向偏转,说明线圈中磁通也发生变化,线圈中也有电流出现,如图2—10b所示。当条形磁铁在线圈中停止运动时,检流计指针无偏转,线圈中磁通没有变化,线圈中也没有电流。如果条形磁铁插人或拔出的速度越快,即磁通量变化得越快,则检流计指针偏转越大,反之,检流计指针偏转越小。上述两个实验说明,无论是直导线在磁场中作切割磁感应线运动,还是磁铁对线圈作相对运动,都是由于运动使得穿过(直导线或线圈组成的)闭合回路中的磁通量发生了改变,因而在直导线或线圈中产生电动势。若直导线或线圈构成回路,则直导线或线圈中将有电流出现。回路中磁通量的变化是导致直导线或线圈中产生电动势的根本原因,即“动磁生电”。磁通量的变化越大,产生的电动势越大。因磁通变化而在直导线或线圈中产生电动势的现象,叫做电磁感应。由电磁感应产生的电动势叫做感应电动势。由感应电动势在闭合电路形成的电流,叫做感应电流。二、法拉第定律从如图2—10所示的实验中可知,感应电动势的大小,取决于条形磁铁插入或拔出的快慢,即取决于磁通变化的快慢。磁通变化越快,感应电动势就越大;反之就越小。磁通变化的快慢,用磁通变化率来表示。例如,有一单匝线圈,在时刻穿过线圈的磁通为,在此后的某二时刻,穿过线圈的磁通为,那么在这段时间内,穿过线圈的磁通变化量为:因此,单位时间内的磁通变化量,即磁通变化率是:在单匝线圈中产生的感应电动势的大小是:式中的绝对值符号,表示只考虑感应电动势的大小,不考虑方向。对手多匝线圈来说,因为通过各匝线圈的磁通变化率是相同的,所以每匝线圈感应电动势大小相等。因此,多匝线圈感应电动势是单匝线圈感应电动势的N倍,即:式中——在时间内感应电动势的平均值(V);——线圈匝数;/——磁通变化率;——线圈中磁通变化量(Wb);——磁通变化所用的时间(s)。公式(2—5)说明,当穿过线圈的磁通发生变化时,线圈两端的感应电动势的大小只及磁通变化率成正比。这就是法拉第定律。想一想:上述规律可以用几件简单的元件、仪表进行验证。三、楞次定律法拉第电磁感应定律,只解决了感应电动势的大小取决于磁通变化率,但无法说明感应电动势的方向及磁通量变化之间的关系。为了找出它们之间的规律,必须对前面的实验再作进一步研究。从图2—10实验中可以看到穿过线圈的原磁通的方向是向下的。如图2—11a所示,当磁铁插入线圈时,线圈中的原磁通量增加,产生感应电动势。感应电流由检流计的正端流人。此时,感应电流在线圈中产生一个新的磁通。根据安培定则可以判定,新磁通及原磁通的方向相反,也就是说,新磁通阻碍原有磁通增加。如图2—1lb所示,当磁铁由线圈中拔出时,线圈中的原有磁通减少,产生感应电动势,感应电流由检流计的负端流人。此时,感应电流在线圈中产生一个新的磁通,根据安培定则判定,新磁通及原有磁通的方向是相同的,也就是说,新磁通阻碍原有磁通的减少。经过上面的讨论得出一个规律:线圈中磁通变化时,线圈中产生感应电动势,其方向是使它形成的感应电流产生新磁通来阻碍原有磁通的变化。也就是说,感应电流的新磁通总是阻碍原有磁通的变化。这个规律被称为楞次定律。应用楞决定律来判定线圈中产生感应电动势的方向或感应电流的方向,具体方法步骤如下:1.首先明确原磁通的方向和原磁通的变化(增加或减少)的情况。2.根据楞次定律判定感应电流产生新磁通的方向。3.根据新磁通的方向,应用安培定则(右手螺旋定则)判定出感应电动势或感应电流的方向。例如,在图2—11中,线圈固定不动,条形磁铁向下、向上运动时,判断线圈a、b两端感应电动势的方向。当磁铁向下运动时,原磁通西增加,且方向向下,由楞次定律可知新磁通西7的方向向上。根据安培定则可判断出,大拇指的指向是新磁通的方向,其余四指的指向就是感应电动势的方向,即由b到a,如图2—11a所示。当磁铁向上运动时,原磁通减少,且方向向下,由楞次定律可知新磁通的方向向下,阻碍原磁通的减少,根据安培定则可判断出,感应电动势的方向是由a到b,如图2—11b所示。对于直导线切割磁感应线向产生感应电动势的方向,用右手定则进行判定。右手定则内容是:伸开右手,使大拇指及其余四指垂直并且及手掌在同一平面内,手心对着磁极的N极,让磁感应线垂直穿过手心,大拇指指向导体的运动方向,其余四指所指的方向就是感应电动势的方向,如图2—12所示。右手定则又叫发电机定则。四、电磁感应定律为了使法拉第定律不仅能表示出感应电动势的大小,同时也能表示出它的方向。把法拉第定律及楞次定律结合起来就是电磁感应定律。电磁感应定律的内容是:感应电动势的大小及磁通变化率成正比,感应电流的方向总是阻碍原磁通变化。§2—4自感、互感一、自感自感是一种电磁感应现象;下面通过实验说明什么是自感。在图2—13a中,有两个相同的灯泡。合上开关后,灯泡HL1立刻正常发光。灯泡HL2慢慢变亮。其原因是在开关S闭合的瞬间,线圈L中的电流是从无到有,线圈中这个电流所产生的磁通也随之增加,于是在线圈中产生感应电动势。根据楞次定律,由感应电动势所形成的感应电流产生的新磁通,要阻碍原磁通的增加;感应电动势的方向及线圈中原来电流的方向相反,使电流不能很快地上升,所以灯泡HL2只能慢慢变亮。在图2—13b中,当开关S断开时,HL灯泡不会立即熄灭,而是突然一亮然后熄灭。其原因是在开关S断开的瞬间,线圈中电流要减小到零,线圈中磁通也随之减小。由于磁通变化在线圈中产生感应电动势。根据楞次定律;感应电动势所形成的感应电流产生的新磁通,阻碍原磁通的减少,感应电动势方向及线圈中原来的电流方向一致,阻止电流减少,即感应电动势维持电感中的电流慢慢减小。所以灯泡HL不会立刻熄灭。想一想:为什么灯泡的亮度会有变化?开卷闭合的时候,HL中的电流由谁决定?开关断开时,HL中的电流由谁决定?通过两个实验可以看到,由于线圈自身电流的变化,线圈中也要产生感应电动势。把由于线圈自身电流变化而引起的电磁感应叫做自感应,简称自感。由自感现象产生的电动势叫做自感电动势。为了表示自感电动势的大小,引入一个新的物理量,叫自感系数。当一个线圈通过变化电流后,单位电流所产生的自感磁通数,称为自感系数,也称电感量,简称电感,用字母L表示。电感是测量线圈产生自感磁通本领大小的物理量。如果一个线圈中流过1安电流,能产生1韦的自感磁通,则该线圈的电感就是1亨利,简称亨,用字母H表示。在实际使用中,有时用亨利单位太大,常采用较小的单位毫亨(mH)、微亨(pH)。它们之间的关系为:电感L是线圈的固有参数,它取决于线圈的几何尺寸以及线圈中介质的磁导率。如果介质磁导率恒为常数,这样的电感叫线性电感,如空心线圈的电感L为常数;反之,则称为非线性电感,如有铁心的线圈的电感L不是常数。自感在电工技术中,既有利又有弊。如日光灯是利用镇流器(铁心线圈)产生自感电动势提高电压来点亮灯管的,同时也利用它来限制灯管电流。但是,在有较大电感元件的电路被切断瞬间,电感两端的自感电动势很高,在开关刀口断开处产生电弧,烧毁刀口,影响设备的使用寿命;在电子设备中,这个感应电动势极易损坏设备的元器件,必须采取相应措施,予以避免。二、互感互感也是一种电磁感应现象。图2—14中有两个互相靠近的线圈。当原线圈电路的开关S闭合时,原线圈中的电流增大,磁通也增加,副线圈中磁通也随之增加而产生感应电动势,检流计指针偏转,说明副线圈中也有电流。当原线圈电路开关S断开时,原线圈中的电流减小,磁通也减小,这个变化的磁通使副线圈中产生感应电动势,检流计指针向相反方向偏转。这种由于—个线圈电流变化,引起另一个线圈中产生感应电动势的电磁感应现象,叫做互感现象,简称互感。由互感产生的感应电动势称为互感电动势。人们利用互感现象,制成了电工领域中伟大的电器——变压器。习题1.人们把具有__________的特性叫磁性,把具有__________特性的物体叫磁体。2.每个磁体都有__________个磁极,即__________极和__________极。3.自然界有一些物质,如__________,它们受到磁场作用后会带有磁性,这种现象叫__________。4.磁铁之间存在力的作用,两个磁铁的__________性磁极相互排斥,__________性磁极相互吸引。5.磁感应线是一些__________曲线。在磁体外部磁感应线是从__________极出发到__________极终止;在磁体内部是从__________极出发到__________极终止。6.磁通是描述__________的物理量,单位是__________。7.磁感应强度是描述__________的物理量,单位是__________。8.感应电动;势是指__________产生的电动势,一般可以用__________判定它的方向。9.通电直导线感应电动势的大小及__________、__________和__________有关,线圈的感应电动势大小及__________有关。10.电磁铁是利用____________________原理做成的,发电机是利用______________________原理做成的,而电动机是利用____________________原理制成的。11.工业应用的磁铁,都是通电线圈使铁心磁化现象的具体应用。试应用安培定则判定习题图2—1中线圈通电后磁极的极性,或根据磁极的极性判定电源的极性。12.应用右手定则,判定习题图2—2的感应电动势方向、导线运动方向、磁场方向。13.根据楞次定律和安培定则,判定线圈中感应电动势或感应电流的方向,见习题图2—3。14.自感是在__________中产生感应电动势的现象,互感是在__________中产生感应电动势的现象。15.说说在日常生活中,应用最多的自感是什么?16.自盛电动势的威力巨大,你能有什么办法降低它产生的电压吗?17.设计一个试验,测一测一群人中谁的反应最快?第三章正弦交流电路本章学习要点:1.明确交流电、正弦交流电的概念及其三要素;2.了解正弦交流电的表示法;3.熟悉单相交流电路中R,L,C元件的欧姆定律形式,了解R,L,C电路中三元件两端电压、电流的相位关系特点;4.掌握三相电路的连接形式及特点;5.熟悉照明电路的连接要点及常用照明元件的特点。18世纪中叶,有个叫欧拉的瑞士数学家。他在前人研究的基础上,取得了非常多的研究成就,共写下了886本书籍和论文,其中分析、代数、数论占。40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%。在他之后的数学家拉格朗日、拉普拉斯,都把欧拉当导师。在数学中,欧拉首次提出很多现在还在使用的基本概念,如sin,cos,tan,,()。欧拉提出的正弦函数在当今的电气技术中,有很大的应用。因为现在我们这个世界上,几乎找不到及正弦方式输送无关的电能,几乎到处都能找到以正弦方式使用的电能。实践证明,使用正弦规律是最聪明、最科学的。§3—1正弦交流电的产生一、正弦交流电的特点种第一章直流电路中所讨论的直流电;其电流(及电压、电磁势)的大小和方向是不随时间变化的。但是在生产实际中,除了应用直流电外,还广泛地应用交流电。所谓交流电是指电流(及电压、电动势)的大小和方向随时间的变化而变化。交变电流、交变电压和交变电动势统称为交流电。通常将交流电分为正弦交流电和非正弦交流电两大类。正弦交流电是指其交流量随时间按正弦规律变化。人们经常用图形表示电流(及电压、电动势)随时间变化的规律,这种图形称为波形图,如图3—1所示。图中横坐标表示时间,纵坐标表示不同时刻的交流量(电流、电压、电动势)值。从如图3—1b所示的波形图中可以看到,正弦交流电(如无特别说明都简称交流电)的特点是:1.变化的瞬时性正弦交流电的大小和方向时时刻刻都在变化。2.变化的周期性正弦交流电每隔一定时间又作重复的变化。3.变化的规律性正弦交流电是随着时间按正弦规律变化的。正弦交流电在工农业生产以及日常生活中应用广泛,是由于它具有便于远距离传输和分配,交流发电机结构简单、运行可靠、维修方便、节省材料、具有更低的电磁干扰等优点。二、正弦交流电的产生正弦交流电是由交流发电机产生的。如图3—2a所示是最简单的交流发电机示意图j它由定子和转子组成。定子有N,S两个固定磁极。转子是一个可以转动的钢质圆柱体,其上紧绕着一匝导线。导线两端分别接到两个相互绝缘的铜环上,铜环及连接外电路的电刷相接触。当用原动机(如水轮机或汽轮机)拖动电枢转动时,由于运动导线切割磁感应线而在线圈中产生感应电动势。为了得到正弦波形的感应电动势,应采用特定形式的磁极,使磁极及电枢之间的空隙中的磁感应强度按下列规律分布:第一,磁感应线垂直于电枢表面。第二,磁感应强度B在电枢表面按正弦规律分布。如图3—2b所示。在磁极中心位置处的磁感应强度最大,用表示;在磁性分界面处的磁感应强度为零。磁感应强度等于零的平面叫做中性面,如图3—2b所示的水平面。如线圈所在位置的平面及中性面成a角,此处电枢表面的磁感应强度为:当电枢在磁场中从中性面开始,以匀角速度逆时针转动时,单匝线圈的a、b边在磁场内切割磁感应线产生感应电动势。单匝线圈中产生的磁感应电动势为:如果线圈有N匝,则总的感应电动势为:当=90及=270时,感应电动势具有最大值,即:式中——感应电动势最大值(V);——线圈的匝数;——最大磁感应强度(Wb/);——线圈的有效长度(m)——导线运动速度(m/s)将公式(3—3)代人公式(3—2)后,得:因为电枢在磁场中以角速度作匀速转动,在任意时刻线圈平面及中性面的夹角等于角速度及时间的乘积,即:因此,感应电动势的数学式又可以写成:这样就把感应电动势随角度变化转为随时间变化。为今后研究交流电正弦量提供了方便。同理,交流电压、交流电流可表示为:§3—2正弦交流电的三要素一、周期、频率、角频率由如图3—1所示中的正弦交流电流波形图可以看出,它从零开始随时间延长而增至最大值,然后逐渐减到零;以后由零开始反向增至最大值,然后再回到零。这样,交流电流就变化一次。交流电就按照这样的规律做周而复始的变化,变化一次叫做一周。交流电变化一周所需要的时间叫做周期,用字母T表示,单位是秒(s),较小的单位有毫秒(ms)和微秒()。它们之间的关系为:周期的长短表示交流电变化的快慢l周期越小,说明交流电变化一周所需的时间越短,交流电的变化越快;反之,交流电的变化越慢。频率是指在一秒钟内交流电变化的次数,用字母表示,单位为赫兹;简称赫,用Hz表示。当频率很高时,可以使用千赫(kHz)、一兆赫(MHz)、吉赫(GHz):等。它们之间的关系为:频率和周期一样,是反映交流电变化快慢的物理量。它们之间的关系为:我国农业生产及日常生活中使用的交流电标准频率为50Hz。通常把50Hz,的交流电称为工频交流电。交流电变化的快慢除了用周期和频率表示外,还可以用角频率表示。所谓角频率就是交流电每秒钟变化的角度,用字母表示,单位是rad/s(弧度/秒)。周期、频率和角频率的关系是:二、瞬时值、最大值、有效值正弦交流电(简称交流电)的电动势、电压、电流,在任袁瞬间的数值叫交流电的瞬时值,用小写字母,,表示。瞬时值中最大的值称为最大值。最大值也称为振幅或峰值。在波形图生,曲线的最高点对应的纵轴值,即表示最大值。用,,分别表示电动势、电压、电流的最太值。它们之间的关系为:由公式(3—9)可知,交流电的大小和方向是随时间变化的,瞬时值在零值及最大值之间变化,没有固定的数值。因此,不能随意用一个瞬时值来反映交流电的做功能力。如果选用最大值,就夸大了交流电的做功能力,因为交流电在绝大部分时间内都比最大值要小。这就需要选用一个数值,能等效地反映交流电做功的能力。为此,引人了交流电的有效值这一概念。正弦交流电的有效值是这样定义的:如果一个交流电通过一个电阻,在一个周期内所产生的热量,和某一直流电流在相同时间内通过同一电阻产生的热量相等,那么,这个直流电的电流值就称为交流电的有效值。正弦交流电的电动势。电压、电流的有效值分别用字母,,表示。通常所说的交流电的电动势、电压、电流的大小都是指它的有效值,交流电气设备铭牌上标注的额定值、交流电仪表所指示的数值也都是有效值。今后在谈到交流电的数值时,如无特殊注明,都是指有效值。理论计算和实验测试都可以证明,它们之间的关系为:三、相位、初相和相位差在如图3—3所示中,两个相同的线圈固定在同一个旋转轴上,它们相互垂直,以角速度叫逆时针旋转。在AX和BY线圈中产生的感应电动势分别为和,如图3—4所示。当t=0时,AX线圈平面及中性面之间的夹角=0,BY线圈平面及中性面之间的夹角=90。在任意时刻两个线圈的感应电动势分别为:公式中,和是表示交流电变化进程的一个角度,称为交流电的相位或相角,它决定了交流电在某一瞬时所处的状态。=0时的相位叫初相位或初相。它是交流电在计时起始时刻的电角度,反映了交流电的初始值。例如,AX,BY线圈的初相分别是=0,=90。在=0时,两个线圈的电动势分别为=0,。两个频率相同的交流电的相位之差叫相位差。令上述的初相位=0,的初相位=90,则两个电动势的相位差为:可见,相位差就是两个电动势的初相差。从如图3—5所示可以看到,初相分别为和的频率相同的两个电动势的同向最大值,不能在同一时刻出现。就是说比超前角度达到最大值,或者说比滞后角度达到最大值。综上所述,一个交流电变化的快慢用频率表示;其变化的幅度,用最大值表示;其变化的起点用初相表示。如果交流电的频率、最大值、初相确定后,就可以准确确定交流电随时间变化的情况。因此,频率、最大值和初相称为交流电的三要素。例题1已知两正弦电=1OOsin(10060)V,=65sin(10030)V,求各电动势的最大值、频率、周期、相位、初相及相位差。解:(1)振幅(2)频率(3)周期(4)相位(5)初相(6)相位差§3—3正弦交流电的表示法正弦交流电的表示方法有三角函数式法和正弦曲线法两种。它们能真实地反映正弦交流电的瞬时值随时间的变化规律,同时也能完整地反映出交流电的三要素。一、三角函数式法正弦交流电的电动势、电压、电流的三角函数式为:若知道了交流电的频率、最大值和初相,就能写出三角函数式,用它可以求出任一时刻的瞬时值。例题2已知正弦交流电的频率=50Hz,最大值=310V,初相=。求=1/300S时的电压瞬时值。解:电压的三角函数标准式为:则其电压瞬时值表达式为:将t=0.01s代人上式二、正弦曲线法-波形法正弦曲线法就是利用三角函数式相对应的正弦曲线,来表示正弦交流电的方法。在如图3—6所示中,横坐标表示时间或者角度,纵坐标表示随时间变化的电动势瞬时值。图中正弦曲线反映出正弦交流电的初相=0。最大值,周期T以及任一时刻的电动势瞬时值。这种图也叫做波形图。§3—4单相交流电路在直流电路中,电路的参数只有电阻R。而在交流电路中,电路的参数除了电阻R以外,还有电感L和电容C。它们不仅对电流有影响,而且还影响了电压及电流的相位关系。因此,研究交流电路时,在确定电路中数量关系的同时,必须考虑电流及电压的相位关系,这是交流电路及直流电路的主要区别。本节只简单介绍纯电阻、纯电感、纯电容电路。一、纯电阻电路纯电阻电路是只有电阻而没有电感、电容的交流电路。如白炽灯、电烙铁、电阻炉组成的交流电路都可以近似看成是纯电阻电路,如图3—7所示。在这种电路中对电流起阻碍作用的主要是负载电阻。加在电阻两端的正弦交流电压为,在电路中产生了交流电流,在纯电阻电路中,龟压和电流瞬时值之间的关系,符合欧姆定律,即:由于电阻值不随时间变化,则电流及电压的变化是一致的。就是说,电压为最大值时,电流也同时达到最大值;电压变化到零时,电流也变化到零。如图3—8所示。纯电阻电路中,电流及电压的这种关系称为“同相”。通过电阻的电流有效值为:公式3—14是纯电阻电路的有效值。在纯电阻电路中,电流通过电阻所做的功及直流电路的计算方法相同,即:二、纯电感电路纯电感电路是只有电感而没有电阻和电容的电路。如由电匪很小的电感线圈组成的交流电路,都可近似看成是纯电感电路,如图3—9所示。在如图3—9所示的纯电感电路中;如果线圈两端加上正弦交流电压,则通过线圈的电流也要按正弦规律变化。由于线圈中电流发生变化,在线圈中就产生自感电动势,它必然阻碍线圈电流变化。经过理论分析证明,由于线圈中自感电动势的存在,使电流达到最大值的时间,要比电压滞后90,即四分之一周期。也就是说,在纯电感电路中,虽然电压和电流都按正弦规律变化,但两者不是同相的,如图3—10所示,正弦电流比线圈两端正弦电压滞后90,或者说,电压超前电流90。理论证明,纯电感电路中线圈端电压的有效值,及线圈通过电流的有效值之间的关系是:是电感线圈对角频率为叫的交流电所呈现的阻力,称为感抗,用表示,即:式中——感抗();——频率(Hz);——电感(H)。感抗是用来表示电感线圈对交流电阻碍作用的物理量。感抗的大小,取决于通过线圈电流的频率和线圈的电感量。对于具有某一电感量的线圈而言,频率越高,感抗越大,通过的电流越小;反之,感抗越小,通过的电流越大。收音机中的高频扼流圈不让高频电流通过,只让低频电流通过,就是这个道理。在直流电路中,由于频率为零,故线圈的感抗也为零,线圈的电阻很小,可以把线圈看成是短路的。例题3有一电感为0.1mH的线圈,分别接在电压=0.1V,频率为=1000Hz,=1MHz的两个交流电源上。求两种情况下通过线圈的电流。解:当=1000Hz时,感抗为:当=1MHz时,感抗为:结论:同一个电源电压、同一个电感,交流电频率差1000倍,差1000倍,电流差1000倍!三、纯电容电路电容器是由两个金属板中间隔着不同的介质(云母、绝缘纸等)组成的。它是存放电荷的容器。电容器中的两个金属板叫电容器两个极板。如果把电容器的两个极板分别及直流电路两端连接,如图3—11所示,则两极板间有电压,在极板间建立了电场。在电场力作用下,驱使自由电子运动,使两个极板分别带上数量相等符号相反的电荷。及电源正极相连的极板带正电荷,及电源负极相连的极板带负电荷。实验证明,极板上存有电荷越多,则极板间的电压越高,二者成正比。因此,将电容器的电量及极板间电压的比值叫做电容器的电容量,简称电容,用字母表示,即:式中——下任意极板上的电量(C);——两极板间的电压(V);——电容量(F)当电容器极板间电压为l伏,极板上电量为1库仑,则电容器的电容量为1法拉,简称法,用字母F表示。在实际应用中,由于法拉单位过大,所以经常使用微法()和皮法()为电容的单位,它们之间的关系为:常用的电容器符号如图3—12所示。电容器在电工和电子技术中应用广泛。如在电力系统中用它改善系统的功率因数,在电子技术中用它进行滤波、耦合、隔直、旁路、选频等。在这里只简单介绍电容在交流电路的作用。纯电容电路是只有电容而没有电阻、电感的电路。如电介质损耗很小,绝缘电阻很大的电容器组成的交流电路。可近似看成纯电容电路。在如图3—13所示的纯电容电路中,电容器接上交流电源。在电压升高的过程中,电容器充电,在电压降低的过程中,电容器放电。由于电容器端电压按正弦规律变化,致使电容器不断地进行充电、放电。于是在电路中形成按正弦规律变化的电流。理论分析证明:电路中电流达到同方向最大值的时间,比电容器的端电压超前90,即提前四分之一周期。也就是说在纯电容电路中,虽然电流及电压都按正弦规律变化;但两者的相位不同,如图3—14所示,纯电容电路中的电流超前电压90。理论证明:在纯电容电路中,电容两端电压的有效值及电路电流有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论