湖南省衡阳市八中2021-2022学年高三第二次诊断性检测数学试卷含解析_第1页
湖南省衡阳市八中2021-2022学年高三第二次诊断性检测数学试卷含解析_第2页
湖南省衡阳市八中2021-2022学年高三第二次诊断性检测数学试卷含解析_第3页
湖南省衡阳市八中2021-2022学年高三第二次诊断性检测数学试卷含解析_第4页
湖南省衡阳市八中2021-2022学年高三第二次诊断性检测数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为锐角,若,则的值为()A. B. C. D.2.设数列是等差数列,,.则这个数列的前7项和等于()A.12 B.21 C.24 D.363.设全集,集合,,则()A. B. C. D.4.已知为虚数单位,复数满足,则复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知向量,若,则实数的值为()A. B. C. D.6.函数的部分图象大致为()A. B.C. D.7.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是()A.2 B.3 C.4 D.18.我国宋代数学家秦九韶(1202-1261)在《数书九章》(1247)一书中提出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.其实质是根据三角形的三边长,,求三角形面积,即.若的面积,,,则等于()A. B. C.或 D.或9.已知双曲线的左、右焦点分别为,,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为()A. B. C. D.10.若平面向量,满足,则的最大值为()A. B. C. D.11.函数的图象大致是()A. B.C. D.12.已知,且,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,则“甲、乙两人恰好在同一企业”的概率为_________.14.在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的准线方程为_____.15.一次考试后,某班全班50个人数学成绩的平均分为正数,若把当成一个同学的分数,与原来的50个分数一起,算出这51个分数的平均值为,则_________.16.在中,角,,的对边长分别为,,,满足,,则的面积为__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,求证:.(2)讨论函数的极值;(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由.18.(12分)(Ⅰ)证明:;(Ⅱ)证明:();(Ⅲ)证明:.19.(12分)某工厂,两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,生产线生产的产品为合格品的概率分别为和.(1)从,生产线上各抽检一件产品,若使得至少有一件合格的概率不低于,求的最小值.(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.①已知,生产线的不合格产品返工后每件产品可分别挽回损失元和元.若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利元、元、元,现从,生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值.20.(12分)在平面直角坐标系中,曲线的参数方程为:(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线交于,两点,与曲线交于,两点,求取得最大值时直线的直角坐标方程.21.(12分)已知首项为2的数列满足.(1)证明:数列是等差数列.(2)令,求数列的前项和.22.(10分)已知数列的前n项和,是等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)令.求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

用诱导公式和二倍角公式计算.【详解】.故选:D.【点睛】本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系.2.B【解析】

根据等差数列的性质可得,由等差数列求和公式可得结果.【详解】因为数列是等差数列,,所以,即,又,所以,,故故选:B【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.3.D【解析】

求解不等式,得到集合A,B,利用交集、补集运算即得解【详解】由于故集合或故集合故选:D【点睛】本题考查了集合的交集和补集混合运算,考查了学生概念理解,数学运算的能力,属于中档题.4.B【解析】

求出复数,得出其对应点的坐标,确定所在象限.【详解】由题意,对应点坐标为,在第二象限.故选:B.【点睛】本题考查复数的几何意义,考查复数的除法运算,属于基础题.5.D【解析】

由两向量垂直可得,整理后可知,将已知条件代入后即可求出实数的值.【详解】解:,,即,将和代入,得出,所以.故选:D.【点睛】本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.6.B【解析】

图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。【详解】,故奇函数,四个图像均符合。当时,,,排除C、D当时,,,排除A。故选B。【点睛】图像分析采用排除法,一般可供判断的主要有:奇偶性、周期性、单调性、及特殊值。7.B【解析】

将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,,,求的值.因为,解得,,解得.故选B.【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.8.C【解析】

将,,,代入,解得,再分类讨论,利用余弦弦定理求,再用平方关系求解.【详解】已知,,,代入,得,即,解得,当时,由余弦弦定理得:,.当时,由余弦弦定理得:,.故选:C【点睛】本题主要考查余弦定理和平方关系,还考查了对数学史的理解能力,属于基础题.9.C【解析】

由双曲线定义得,,OM是的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.【详解】根据题意,点P一定在左支上.由及,得,,再结合M为的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.——①由,得.——②由①②,解得,即,则渐近线方程为.故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.10.C【解析】

可根据题意把要求的向量重新组合成已知向量的表达,利用向量数量积的性质,化简为三角函数最值.【详解】由题意可得:,,,故选:C【点睛】本题主要考查根据已知向量的模求未知向量的模的方法技巧,把要求的向量重新组合成已知向量的表达是本题的关键点.本题属中档题.11.C【解析】

根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【详解】∵,,∴函数为奇函数,∴排除选项A,B;又∵当时,,故选:C.【点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.12.B【解析】分析:首先利用同角三角函数关系式,结合题中所给的角的范围,求得的值,之后借助于倍角公式,将待求的式子转化为关于的式子,代入从而求得结果.详解:根据题中的条件,可得为锐角,根据,可求得,而,故选B.点睛:该题考查的是有关同角三角函数关系式以及倍角公式的应用,在解题的过程中,需要对已知真切求余弦的方法要明确,可以应用同角三角函数关系式求解,也可以结合三角函数的定义式求解.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

求出所有可能,找出符合可能的情况,代入概率计算公式.【详解】解:甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,共有种,甲乙在同一个公司有两种可能,故概率为,故答案为.【点睛】本题考查古典概型及其概率计算公式,属于基础题14.【解析】

代入求解得,再求准线方程即可.【详解】解:双曲线经过点,,解得,即.又,故该双曲线的准线方程为:.故答案为:.【点睛】本题主要考查了双曲线的准线方程求解,属于基础题.15.1【解析】

根据均值的定义计算.【详解】由题意,∴.故答案为:1.【点睛】本题考查均值的概念,属于基础题.16..【解析】

由二次方程有解的条件,结合辅助角公式和正弦函数的值域可求,进而可求,然后结合余弦定理可求,代入,计算可得所求.【详解】解:把看成关于的二次方程,则,即,即为,化为,而,则,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(负的舍去),.故答案为.【点睛】本题主要考查一元二次方程的根的存在条件及辅助角公式及余弦定理和三角形的面积公式的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2)见解析;(3)存在,1.【解析】

(1),求出单调区间,进而求出,即可证明结论;(2)对(或)是否恒成立分类讨论,若恒成立,没有极值点,若不恒成立,求出的解,即可求出结论;(3)令,可证恒成立,而,由(2)得,在为减函数,在上单调递减,在都存在,不满足,当时,设,且,只需求出在单调递增时的取值范围即可.【详解】(1),,,当时,,当时,,∴,故.(2)由题知,,,①当时,,所以在上单调递减,没有极值;②当时,,得,当时,;当时,,所以在上单调递减,在上单调递增.故在处取得极小值,无极大值.(3)不妨令,设在恒成立,在单调递增,,在恒成立,所以,当时,,由(2)知,当时,在上单调递减,恒成立;所以不等式在上恒成立,只能.当时,,由(1)知在上单调递减,所以,不满足题意.当时,设,因为,所以,,即,所以在上单调递增,又,所以时,恒成立,即恒成立,故存在,使得不等式在上恒成立,此时的最小值是1.【点睛】本题考查导数综合应用,涉及到函数的单调性、极值最值、不等式证明,考查分类讨论思想,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.18.(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】

运用数学归纳法证明即可得到结果化简,运用累加法得出结果运用放缩法和累加法进行求证【详解】(Ⅰ)数学归纳法证明时,①当时,成立;②当时,假设成立,则时所以时,成立综上①②可知,时,(Ⅱ)由得所以;;故,又所以(Ⅲ)由累加法得:所以故【点睛】本题考查了数列的综合,运用数学归纳法证明不等式的成立,结合已知条件进行化简求出化简后的结果,利用放缩法求出不等式,然后两边同时取对数再进行证明,本题较为困难。19.(1)(2)①生产线上挽回的损失较多.②见解析【解析】

(1)由题意得到关于的不等式,求解不等式得到的取值范围即可确定其最小值;(2)①.由题意利用二项分布的期望公式和数学期望的性质给出结论即可;②.由题意首先确定X可能的取值,然后求得相应的概率值可得分布列,最后由分布列可得利润的期望值.【详解】(1)设从,生产线上各抽检一件产品,至少有一件合格为事件,设从,生产线上抽到合格品分别为事件,,则,互为独立事件由已知有,则解得,则的最小值(2)由(1)知,生产线的合格率分别为和,即不合格率分别为和.①设从,生产线上各抽检件产品,抽到不合格产品件数分别为,,则有,,所以,生产线上挽回损失的平均数分别为:,所以生产线上挽回的损失较多.②由已知得的可能取值为,,,用样本估计总体,则有,,所以的分布列为所以(元)故估算估算该厂产量件时利润的期望值为(元)【点睛】本题主要考查概率公式的应用,二项分布的性质与方差的求解,离散型随机变量及其分布列的求解等知识,意在考查学生的转化能力和计算求解能力.20.(1)曲线,曲线.(2).【解析】

(1)用和消去参数即得的极坐标方程;将两边同时乘以,然后由解得直角坐标方程.(2)过极点的直线的参数方程为,代入到和:中,表示出即可求解.【详解】解:由和,得,化简得故:将两边同时乘以,得因为,所以得的直角坐标方程.(2)设直线的极坐标方程由,得,由,得故当时,取得最大值此时直线的极坐标方程为:,其直角坐标方程为:.【点睛】考查直角坐标方程、极坐标方程、参数方程的互相转化以及应用圆的极坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论