高二数学高二数学期末试卷_第1页
高二数学高二数学期末试卷_第2页
高二数学高二数学期末试卷_第3页
高二数学高二数学期末试卷_第4页
高二数学高二数学期末试卷_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE高二数学期终试卷一.选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题意要求的。1.若直线的斜率k=-5,则倾斜角α=()A.arctan(-5) B.π-arctan(-5)C.arctan5 D.π-arctan52.直线在两坐标轴上的截距相等,则满足条件是()A.B.C.且D.或且3.(1+x)+(1+x)+…….+(1+x)的展开式中,含x项的系数为┄┄()A.2B.2C.CD.C4.在下面四个椭圆中,最接近与圆的是()A.9x2+y2=36B.C.D.2x2+y2=85.甲、乙射击的命中率分别为0.6、0.9,两个独立各射击一次,只有一人命中的概率()A.0.38B.0.42C.0.54D.0.966.若6人随意排成一排,其中甲、乙、丙恰好相邻的概率为┄┄┄()A.B.C.D.7.若过点P(-2,1)作圆(x-3)2+(y+1)2=r2的切线有且仅有一条,则圆的半径r为()A.29B.eq\r(29)C.小于eq\r(29)D.大于eq\r(29)8.若椭圆上一点P到右焦点距离为3,则P到左准线的距离为()A.B.C.2D.49.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()A、 B、 C、 D、10.点P(-3,1)在椭圆的左准线上.过点P且方向为a=(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为()A.B.C.D.11.椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.今有一个水平放置的椭圆形台球盘,点A、B是它的两个焦点,其中焦距为,长轴长为,当放在点A处的小球被击出发,经椭圆壁反弹后再回到点A时,小球经过的路程是() A.B. C.D.以上答案均有可能12.将语、数、外、理、化、生六本课外辅导书赠送给希望工程学校的四名学生阅读,每人至少一本,至多两本,恰好有一人同时获得理、化两本书的概率是()A、B、C、D、二、填空题:本大题共6小题,每小题4分,共24分.13.5人排成一排,其中甲、乙之间至少有一人的排法概率为______。14.若动点分别在直线:和:上移动,则中点到原点距离的最小值为。15.已知x,y满足约束条件16.若双曲线的渐近线方程为,它的一个焦点是,则双曲线的方程是__________。17.对于椭圆和双曲线有下列命题:①椭圆的焦点恰好是双曲线的顶点;②双曲线的焦点恰好是椭圆的顶点;③双曲线与椭圆共焦点;④椭圆与双曲线有两个顶点相同.其中正确命题的序号是.18.我们知道若AB是椭圆的不平行于对称轴且不过原点的弦,M为AB的中点,则.在双曲线中是否也有类似的命题?若有,请写出在双曲线中的一个类似的正确命题:。三、解答题:本大题共5小题,共66分.解答应写出文字说明、证明过程或演算步骤.19、若某一等差数列的首项为,公差是的常数项,其中m是-15除以19的余数,则此数列前多少项的和最大?并求出这个最大值。20、平面上两个质点A、B分别位于(0,0),(2,2),在某一时刻同时开始,每隔1秒钟向上下左右任一方向移动1个单位,已知质点A向左右移动的概率都是向上下移动的概率分别是和质点B向各个方向移动的概率是求:(1)4秒钟后A到达C(1,1)的概率;(2)三秒钟后,A,B同时到达D(1,2)的概率.21.(12分)已知以坐标原点为中心的椭圆,满足条件(1)焦点F1的坐标为(3,0);(2)长半轴长为5.则可求得此椭圆方程为(※)问可用其他什么条件代替条件(2),使所求得的椭圆方程仍为(※)?请写出两种替代条件,并说明理由。22.(14分)已知椭圆的一个焦点F1(0,),对应的准线方程为y=,且一个顶点的坐标为(0,3)。(1)求椭圆方程。(2)是否存在直线l,使l与椭圆交于不同的两点M、N,且线段MN恰被直线x=平分;若存在求出l的倾斜角的范围,若不存在,请说明理由。23.(14分)已知定点,动点在轴上运动,过点作交轴于点,并延长到点,且,。①求动点的轨迹方程;②直线与动点的轨迹交于两点,若,且,求直线的斜率的取值范围。高二数学期末测试答案一、选择题DDDBB,ABCCA,DA二、填空题13.14.3,15.1,16.,17.①②,18.三、解答题19、解:由所以n=2故a1==100又7777-15=(76+1)77-15=76M-14=19(4M-1)+5故m=5,的常数项为所以公差d=-4当n=25或n=26时Sn有最大值1300。20、(1)4秒时,A到达C处,A在4秒内的运动可以是一次向上且一次向左且两次向右或者一次向右且一次向下且两次向上概率为P=P1+P2=(2)3秒时A到达D的概率为21.①短半轴长为4;②离心率e=;③右准线方程为x=;④点P(3,)在椭圆上;⑤椭圆上两点间的最大距离为10;……(答案是开放的,还可写出多种替换条件.)22.(1).可得椭圆的方程:(2)令l:y=kx+m,代入椭圆方程得:(k2+9)x2+2kmx+m2-9=0解得.∴倾斜角。23、解(1)设动点的的坐标为,则,,由得,,因此,动点的轨迹的方程为.…………5分(2)设直线的方程为,与抛物线交于点,则由,得,又,故.又,∴,,∴即解得直线的斜率的取值范围是.……12分高中数学联赛几何定理梅涅劳斯定理一直线截△ABC的三边BC,CA,AB或其延长线于D,E,F则。逆定理:一直线截△ABC的三边BC,CA,AB或其延长线于D,E,F若,则D,E,F三点共线。塞瓦定理在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则=1。逆定理:在△ABC的边BC,CA,AB上分别取点D,E,F,如果=1,那么直线AD,BE,CF相交于同一点。托勒密定理ABCD为任意一个圆内接四边形,则。逆定理:若四边形ABCD满足,则A、B、C、D四点共圆西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线)。西姆松定理的逆定理为:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。相关的结果有:(1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。(2)两点的西姆松线的交角等于该两点的圆周角。(3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。(4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。斯特瓦尔特定理设已知△ABC及其底边上B、C两点间的一点D,则有AB2·DC+AC2·BD-AD2·BC=BC·DC·BD。三角形旁心1、旁切圆的圆心叫做三角形的旁心。2、与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆。费马点在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。所以三角形的费马点也称为三角形的等角中心。若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。判定(1)对于任意三角形△ABC,若三角形内或三角形上某一点E,若EA+EB+EC有最小值,则E为费马点。费马点的计算(2)如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。九点圆:三角形三边的中点,三高的垂足和三个欧拉点(连结三角形各顶点与垂心所得三线段的中点)九点共圆。通常称这个圆为九点圆(nine-pointcircle),欧拉线:三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。几何不等式1托勒密不等式:任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD四点共圆时取等号。2埃尔多斯—莫德尔不等式:设P是ΔABC内任意一点,P到ΔABC三边BC,CA,AB的距离分别为PD=p,PE=q,PF=r,记PA=x,PB=y,PC=z。则x+y+z≥2(p+q+r)3外森比克不等式:设△ABC的三边长为a、b、c,面积为S,则a2+b2+c2≥44欧拉不等式:设△ABC外接圆与内切圆的半径分别为R、r,则R≥2r,当且仅当△ABC为正三角形时取等号。圆幂假设平面上有一点P,有一圆O,其半径为R,则OP^2-R^2即为P点到圆O的幂;可见圆外的点对圆的幂为正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论