辽宁省沈阳市实验北2023年八年级数学第一学期期末学业水平测试模拟试题【含解析】_第1页
辽宁省沈阳市实验北2023年八年级数学第一学期期末学业水平测试模拟试题【含解析】_第2页
辽宁省沈阳市实验北2023年八年级数学第一学期期末学业水平测试模拟试题【含解析】_第3页
辽宁省沈阳市实验北2023年八年级数学第一学期期末学业水平测试模拟试题【含解析】_第4页
辽宁省沈阳市实验北2023年八年级数学第一学期期末学业水平测试模拟试题【含解析】_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省沈阳市实验北2023年八年级数学第一学期期末学业水平测试模拟试题测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5° C.20° D.22.5°2.下列分式的变形正确的是()A. B.C. D.3.如图,中,平分,平分,经过点,且,若,的周长等于12,则的长为()A.7 B.6 C.5 D.44.某三角形三条中位线的长分别为3、4、5,则此三角形的面积为()A.6 B.12 C.24 D.485.在,,,,中,分式的个数是()A.2 B.3 C.4 D.56.若,则的值为()A. B. C. D.7.已知,,则的值为()A.8 B.6 C.12 D.8.如图所示,在中,是边上的中线,,,,则的值为()A.3 B.4 C.5 D.69.甲乙两地铁路线长约500千米,后来高铁提速,平均速度是原来火车速度的1.8倍,这样由甲到乙的行驶时间缩短了1.5小时;设原来火车的平均速度为千米/时,根据题意,可得方程()A. B.C. D.10.如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.36° B.72° C.50° D.46°二、填空题(每小题3分,共24分)11.若关于x,y的二元一次方程组的解也是二元一次方程x+2y=8的解,则k的值为____.12.计算:___.13.将正比例函数y=﹣3x的图象向上平移5个单位,得到函数_____的图象.14.如图所示的坐标系中,单位长度为1,点B的坐标为(1,3),四边形ABCD的各个顶点都在格点上,点P也在格点上,的面积与四边形ABCD的面积相等,写出所有点P的坐标_____________.(不超出格子的范围)15.函数的定义域是__________.16.函数,的图象如图所示,当时,的范围是__________.17.如图,△ABC是等腰直角三角形,AB=BC,已知点A的坐标为(﹣2,0),点B的坐标为(0,1),则点C的坐标为__.18.计算____.三、解答题(共66分)19.(10分)(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为______.(2)若,,求的值.20.(6分)如图,某小区有一块长为(3a+b)米,宽为(a+3b)米的长方形空地,计划在中间边长(a+b)米的正方形空白处修建一座文化亭,左边空白部分是长为a米,宽为米的长方形小路,剩余阴影部分用来绿化.(1)请用含a、b的代数式表示绿化面积S(结果需化简);(2)当a=30,b=20时,求绿化面积S.21.(6分)如图,在中,,,是的垂直平分线.(1)求证:是等腰三角形.(2)若的周长是,,求的周长.(用含,的代数式表示)22.(8分)已知:如图,在△ABC中,点A的坐标为(﹣4,3),点B的坐标为(﹣3,1),BC=2,BC∥x轴.(1)画出△ABC关于y轴对称的图形△A1B1C1;并写出A1,B1,C1的坐标;(2)求以点A、B、B1、A1为顶点的四边形的面积.23.(8分)先化简后求值:先化简()÷,再从﹣1,+1,﹣2中选择合适的x值代入求值24.(8分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶7了小时时,两车相遇,求乙车速度.25.(10分)解分式方程:.26.(10分)如图,在平面直角坐标系中,、、、各点的坐标分别为、、、.(1)在给出的图形中,画出四边形关于轴对称的四边形,并写出点和的坐标;(2)在四边形内部画一条线段将四边形分割成两个等腰三角形,并直接写出两个等腰三角形的面积差.

参考答案一、选择题(每小题3分,共30分)1、A【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【详解】解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,

∴∠1=∠2,∠3=∠4,

∵∠ACE=∠A+∠ABC,

即∠1+∠2=∠3+∠4+∠A,

∴2∠1=2∠3+∠A,

∵∠1=∠3+∠D,

∴∠D=∠A=×30°=15°.

故选A.

【点睛】点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.2、A【分析】根据分式的基本性质进行判断.【详解】A选项:,故正确;B选项:,故错误;C选项:,故错误;D选项:,故错误;故选:A.【点睛】考查了分式的基本性质,解题的关键是熟练运用分式的基本性质.3、A【分析】根据角平分线及得到BM=OM,CN=ON,得到三角形AMN的周长=AB+AC,再利用AB=5即可求出AC的长.【详解】∵平分,∴∠MBO=∠OBC,∵,∴∠OBC=∠MOB,∴∠MBO=∠MOB,∴BM=OM,同理CN=ON,∴的周长=AM+AN+MN=AM+AN+OM+ON=AB+AC=12,∵AB=5,∴AC=7,故选:A.【点睛】此题考查平行线的性质:两直线平行内错角相等,角平分线的定义,三角形周长的推导是解题的关键.4、C【分析】先根据三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半,即求出原三角形的边长分别为6、8、10,再根据勾股定理的逆定理判断原三角形的形状,即可根据三角形面积公式求得面积.【详解】解:∵三角形三条中位线的长为3、4、5,∴原三角形三条边长为,,∴此三角形为直角三角形,,故选C.【点睛】本题考查的是三角形的中位线定理、勾股定理的逆定理,属于基础应用题,熟知性质定理是解题的关键.5、A【解析】根据分式的定义即可得出答案.【详解】根据分式的定义可知是分式的为:、共2个,故答案选择A.【点睛】本题考查的主要是分式的定义:①形如的式子,A、B都是整式,且B中含有字母.6、A【解析】试题解析:设故选A.7、C【分析】首先根据同底数幂乘法,将所求式子进行转化形式,然后代入即可得解.【详解】由已知,得,故选:C.【点睛】此题主要考查同底数幂的运算,熟练掌握,即可解题.8、B【分析】首先过点A作AE⊥BC,交CB的延长线于E,由AE⊥BC,DB⊥BC,得出AE∥BD,由中位线的性质得出BC=BE,然后由∠ABC=120°,得出∠ABE=60°,∠BAE=30°,AB=2BE=2BC,即可得解.【详解】过点A作AE⊥BC,交CB的延长线于E,如图所示:∵AE⊥BC,DB⊥BC,∴AE∥BD,∵AD=CD,∴BD是△ACE的中位线,∴BC=BE,∵∠ABC=120°,∴∠ABE=60°,∴∠BAE=30°,∴AB=2BE=2BC,∵∴BC=4故答案为B.【点睛】此题主要考查平行线的判定与性质以及中位线的性质、特殊直角三角形的性质,熟练掌握,即可解题.9、C【分析】设原来高铁的平均速度为x千米/时,则提速后的平均速度为1.8x,根据题意可得:由甲到乙的行驶时间比原来缩短了1.5小时,列方程即可.【详解】解:设原来火车的平均速度为x千米/时,则提速后的平均速度为1.8x,由题意得,.故选C.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.10、B【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【详解】解:由折叠的性质得:∠D=∠C=36°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+72°,则∠1﹣∠2=72°.故选:B.【点睛】此题考查了翻折变换(折叠问题),以及外角性质,熟练掌握折叠的性质是解本题的关键.二、填空题(每小题3分,共24分)11、2【解析】据题意得知,二元一次方程组的解也是二元一次方程x+2y=8的解,也就是说,它们有共同的解,及它们是同一方程组的解,列出方程组解答即可.【详解】根据题意,得由(1)+(2),得2x=4k即x=2k(4)由(1)-(2),得2y=2k即y=k(5)将(4)、(5)代入(3),得2k+2k=8,解得k=2.【点睛】本题考查了三元一次方程组的解,运用了加减消元法和代入消元法.通过“消元”,使其转化为二元一次方程(组)来解.12、-6【分析】利用零指数幂、负整数指数幂以及乘方的意义计算即可得到结果.【详解】故答案是:【点睛】本题综合考查了乘方的意义、零指数幂以及负整数指数幂.在计算过程中每一部分都是易错点,需认真计算.13、y=-3x+1【分析】平移时k的值不变,只有b发生变化.【详解】解:原直线的k=-3,b=0;向上平移1个单位得到了新直线,那么新直线的k=-3,b=0+1=1.∴新直线的解析式为y=-3x+1.故答案为y=-3x+1.【点睛】求直线平移后的解析式时要注意平移时k和b的值的变化,掌握这点很重要.14、(0,4),(1,2),(2,0),(4,4)【分析】算出四边形ABCD的面积等于△ABC面积与△ACD面积之和即为2,同时矩形AEDC面积也为2,且E为AP1的中点,由中线平分所在三角形面积即为所求.【详解】解:∵,又,∴,又E为AP1的中点,∴DE平分△ADP1的面积,且△AED面积为1,∴△ADP1面积为2,故P1点即为所求,且P1(4,4),同理C为DP3的中点,AC平分△ADP3面积,且△ACD面积为1,故△ADP3面积为2,故P3点即为所求,且P3(1,2),由两平行线之间同底的三角形面积相等可知,过P3作AD的平行线与网格的交点P2和P4也为所求,故P2(0,4),P4(2,0),故答案为:P(0,4),(1,2),(2,0),(4,4).【点睛】考查了三角形的面积,坐标与图形性质,关键是熟练掌握中线平分所在三角形的面积,两平行线之间同底的三角形面积相等这些知识点.15、【分析】根据二次根式的意义及性质,被开方数大于或等于0,据此作答.【详解】根据二次根式的意义,被开方数,解得.故函数的定义域是.故答案为:.【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.掌握二次根式的概念和性质是关键.16、【分析】当时,的图象在的图象的下方可知.【详解】解:当时,,,两直线的交点为(2,2),当时,,,两直线的交点为(-1,1),由图象可知,当时,x的取值范围为:,故答案为:.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是准确看图,通过图象得出x的取值范围.17、(-3,2)【解析】试题分析:作CD⊥x轴于D,根据条件可证得ΔACD≌ΔBAO,故AD=OB=1,CD=OA=2,所以OD=3,所以C(-3,2).考点:1.辅助线的添加;2.三角形全等.18、【分析】设把原式化为,从而可得答案.【详解】解:设故答案为:【点睛】本题考查的是利用平方差公式进行简便运算,掌握平方差公式是解题的关键.三、解答题(共66分)19、(1);(2).【分析】(1)我们通过观察可知阴影部分面积为4ab,他是由大正方形的面积减去中间小正方形的面积得到的,从而得出等式;

(2)可利用上题得出的结论求值.【详解】(1)观察图形可知阴影部分的面积是边长为(a+b)的正方形面积减去边长为(a-b)的正方形面积,也是4个长是a宽是b的长方形的面积,所以.(2)根据(1)的结论可得:【点睛】本题是根据图形列等式,并利用等式来求值,利用等式时要弄清那个式子是等式中的a,那个式子是b.20、(1)(平方米);(2)(平方米)【分析】(1)绿化面积=矩形面积-正方形面积-小矩形面积,利用多项式乘多项式法则及完全平方公式化简,去括号合并得到最简结果;

(2)将a与b的值代入计算即可求出值.【详解】(1)依题意得:

(平方米).

答:绿化面积是()平方米;(2)当,时,(平方米).

答:绿化面积是平方米.【点睛】本题考查了多项式乘多项式,完全平方公式以及整式的化简求值,解题的关键是明确整式的混合运算的法则和代数求值的方法.21、(1)详见解析;(2)a+b【分析】(1)首先由等腰三角形ABC得出∠B,然后由线段垂直平分线的性质得出∠CDB,即可判定;(2)由等腰三角形BCD,得出AB,然后即可得出其周长.【详解】(1)∵,∴∵是的垂直平分线∴∴∵是的外角∴∴∴∴是等腰三角形;(2)∵,的周长是∴∵∴∴的周长.【点睛】此题主要考查线段垂直平分线的性质以及等腰三角形的判定与性质,熟练掌握,即可解题.22、(1)见解析;(2)14.【解析】(1)先求得C点坐标,再根据关于y轴对称的坐标特征标出A1,B1,C1,然后连线即可;(2)过A点作AD⊥BC,交CB的延长线于点D,然后根据梯形的面积公式求解即可.【详解】解:(1)根据题意可得:点C坐标为(﹣1,1),如图所示:则A1的坐标是(4,3),B1的坐标是(3,1),C1的坐标(1,1);(2)过A点作AD⊥BC,交CB的延长线于点D,由(1)可得AA′=2×4=8,BB′=2×3=6,AD=2,∴梯形ABB′A′的面积=(AA′+BB′)•AD=×(8+6)×2=14.【点睛】本题考查画轴对称图形,梯形的面积公式等,解此题的关键在于熟记关于坐标轴对称的点的坐标特征.23、,.【分析】根据分式的加减法和乘除法可以化简题目中的式子,然后在-1,+1,-2中选择一个使得原分式有意义的值代入化简后的式子即可解答本题.【详解】解:()÷==,∵,,∴,,∴当时,原式=.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24、(1)y=(2)75(千米/小时)【分析】(1)先根据图象和题意知道,甲是分段函数,所以分别设0<x≤6时,y=k1x;6<x≤14时,y=kx+b,根据图象上的点的坐标,利用待定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论