![新高考数学一轮复习精讲精练8.2 解析式(基础版)(解析版)_第1页](http://file4.renrendoc.com/view8/M00/12/00/wKhkGWa_0giAcLN2AAGn5IN5g_E126.jpg)
![新高考数学一轮复习精讲精练8.2 解析式(基础版)(解析版)_第2页](http://file4.renrendoc.com/view8/M00/12/00/wKhkGWa_0giAcLN2AAGn5IN5g_E1262.jpg)
![新高考数学一轮复习精讲精练8.2 解析式(基础版)(解析版)_第3页](http://file4.renrendoc.com/view8/M00/12/00/wKhkGWa_0giAcLN2AAGn5IN5g_E1263.jpg)
![新高考数学一轮复习精讲精练8.2 解析式(基础版)(解析版)_第4页](http://file4.renrendoc.com/view8/M00/12/00/wKhkGWa_0giAcLN2AAGn5IN5g_E1264.jpg)
![新高考数学一轮复习精讲精练8.2 解析式(基础版)(解析版)_第5页](http://file4.renrendoc.com/view8/M00/12/00/wKhkGWa_0giAcLN2AAGn5IN5g_E1265.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.2解析式(精讲)(基础版)思维导图思维导图考点呈现考点呈现例题剖析例题剖析考点一待定系数法求解析式【例1】(2022·全国·高三专题练习)(多选)已知函数SKIPIF1<0是一次函数,满足SKIPIF1<0,则SKIPIF1<0的解析式可能为(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【解析】设SKIPIF1<0,由题意可知SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.故选:AD.【一隅三反】1.(2022·全国·高三专题练习)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,则f(1)=____.【答案】9【解析】设f(x)=ax+b(a≠0),则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b=ax+5a+b,即ax+5a+b=2x+17不论x为何值都成立.∴SKIPIF1<0,解得SKIPIF1<0∴f(x)=2x+7,从而得f(1)=9.故答案为:92.(2022·全国·高三专题练习)已知SKIPIF1<0,且SKIPIF1<0为一次函数,求SKIPIF1<0_________【答案】SKIPIF1<0或SKIPIF1<0.【解析】因为SKIPIF1<0为一次函数,所以设SKIPIF1<0,所以SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0恒成立,所以SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,故答案为:SKIPIF1<0或SKIPIF1<0.3(2022·全国·高三专题练习)已知SKIPIF1<0是一次函数,且满足SKIPIF1<0,求SKIPIF1<0_____.【答案】SKIPIF1<0【解析】因为SKIPIF1<0是一次函数,设SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,整理可得SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,故答案为:SKIPIF1<0.考点二换元法求解析式【例2】(2022·全国·高三专题练习)若SKIPIF1<0,则SKIPIF1<0的解析式为(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】设SKIPIF1<0,则SKIPIF1<0,则SKIPIF1<0,所以函数SKIPIF1<0的解析式为SKIPIF1<0.故选:D.【一隅三反】1.(2022·全国·高三专题练习)若函数SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0的解析式是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】B【解析】设SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0.故选:B.【一隅三反】1.(2022·全国·高三专题练习)已知函数SKIPIF1<0,则SKIPIF1<0的解析式为_______【答案】SKIPIF1<0【解析】令SKIPIF1<0,则SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,故答案为:SKIPIF1<0.2.(2022·全国·高三专题练习)若函数SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0__.【答案】SKIPIF1<0【解析】令SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故答案为:SKIPIF1<0.3.(2022·全国·高三专题练习)已知SKIPIF1<0,则SKIPIF1<0的解析式为______________.【答案】SKIPIF1<0【解析】令SKIPIF1<0,则SKIPIF1<0,∴SKIPIF1<0,故答案为:SKIPIF1<0.4.(2022·全国·高三专题练习)已知函数SKIPIF1<0在定义域SKIPIF1<0上单调,且SKIPIF1<0时均有SKIPIF1<0,则SKIPIF1<0的值为(
)A.3 B.1 C.0 D.SKIPIF1<0【答案】A【解析】根据题意,函数SKIPIF1<0在定义域SKIPIF1<0上单调,且SKIPIF1<0时均有SKIPIF1<0,则SKIPIF1<0为常数,设SKIPIF1<0,则SKIPIF1<0,则有SKIPIF1<0,解可得SKIPIF1<0,则SKIPIF1<0,故SKIPIF1<0;故选:A.考点三解方程组求解析式【例3】(2022·全国·高三专题练习)若函数SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0(
)A.0 B.2 C.3 D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0,可得SKIPIF1<0,联立两式可得SKIPIF1<0,代入SKIPIF1<0可得SKIPIF1<0.故选:D.【一隅三反】1.(2022·浙江·高三专题练习)已知函数f(x)满足SKIPIF1<0,则f(x)的解析式为(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】若SKIPIF1<0,则SKIPIF1<0,满足题意;若SKIPIF1<0,则SKIPIF1<0,不满足题意;若SKIPIF1<0,则SKIPIF1<0,不满足题意;若SKIPIF1<0,则SKIPIF1<0,不满足题意.故选:A.2.(2022·全国·高三专题练习)已知定义域为R的函数SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0___________.【答案】SKIPIF1<0【解析】因为SKIPIF1<0,所以SKIPIF1<0,同除以2得SKIPIF1<0,两式相加可得SKIPIF1<0,即SKIPIF1<0.故答案为:SKIPIF1<0.3(2022·全国·高三专题练习)若函数SKIPIF1<0,SKIPIF1<0满足SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0________.【答案】SKIPIF1<0【解析】由SKIPIF1<0,可知SKIPIF1<0,联立可得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0又因为SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案为:SKIPIF1<04.(2022·全国·高三专题练习)已知SKIPIF1<0,则函数f(x)的解析式为___________.【答案】SKIPIF1<0【解析】∵SKIPIF1<0,①∴SKIPIF1<0,②①×3﹣②×5,得:﹣16f(x)=SKIPIF1<0﹣10x﹣2,∴SKIPIF1<0故答案为:SKIPIF1<0考点四配凑法【例4】(2022·全国·高三专题练习)已知函数f(x﹣1)=x2+2x﹣3,则f(x)=()A.x2+4x B.x2+4 C.x2+4x﹣6 D.x2﹣4x﹣1【答案】A【解析】SKIPIF1<0,所以SKIPIF1<0.故选:A【一隅三反】1.(2022·浙江·高三专题练习)已知SKIPIF1<0,则SKIPIF1<0_______.【答案】SKIPIF1<0【解析】因为SKIPIF1<0,所以SKIPIF1<0,故答案为:SKIPIF1<02.(2022·全国·高三专题练习)已知SKIPIF1<0,则SKIPIF1<0的值等于___.【答案】7【解析】SKIPIF1<0,令SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,当且仅当SKIPIF1<0时取等号,当SKIPIF1<0时,SKIPIF1<0,当且仅当SKIPIF1<0时取等号,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0则SKIPIF1<0故答案为:73.(2022·全国·高三专题练习)已知f(x-SKIPIF1<0)=x2+SKIPIF1<0,则f(x+SKIPIF1<0)=________.【答案】SKIPIF1<0【解析】因为f(x-SKIPIF1<0)=x2+SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以f(x+SKIPIF1<0)SKIPIF1<0,故答案为:SKIPIF1<0.8.2解析式(精练)(基础版)题组一题组一待定系数法求解析式1.(2022·全国·高三专题练习)若SKIPIF1<0是SKIPIF1<0上单调递减的一次函数,若SKIPIF1<0,则SKIPIF1<0__.【答案】SKIPIF1<0【解析】因为SKIPIF1<0是SKIPIF1<0上单调递减的一次函数,所以设SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,又因为SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0故答案为:SKIPIF1<0.2.(2022·全国·高一课时练习)已知SKIPIF1<0是一次函数,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【【解析】依题意,设SKIPIF1<0,则有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故选:D3..(2022·江苏·)(1)已知SKIPIF1<0是一次函数,且SKIPIF1<0,求SKIPIF1<0;(2)已知SKIPIF1<0是二次函数,且满足SKIPIF1<0,求SKIPIF1<0.【答案】(1)SKIPIF1<0或SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)设SKIPIF1<0,则SKIPIF1<0因为SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0所以SKIPIF1<0或SKIPIF1<0(2)设SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0由SKIPIF1<0得SKIPIF1<0整理,得SKIPIF1<0所以SKIPIF1<0所以SKIPIF1<0所以SKIPIF1<04.(2022·云南)(1)已知f(x)是一次函数,且满足f(x+1)-2f(x-1)=2x+3,求f(x)的解析式.(2)若二次函数g(x)满足g(1)=1,g(-1)=5,且图象过原点,求g(x)的解析式.【答案】(1)f(x)=-2x-9;(2)g(x)=3x2-2x.【解析】(1)设f(x)=kx+b(k≠0),则f(x+1)-2f(x-1)=kx+k+b-2kx+2k-2b=-kx+3k-b,即-kx+3k-b=2x+3不论x为何值都成立,∴SKIPIF1<0解得SKIPIF1<0∴f(x)=-2x-9.(2)设g(x)=ax2+bx+c(a≠0),∵g(1)=1,g(-1)=5,且图象过原点,∴SKIPIF1<0解得SKIPIF1<0∴g(x)=3x2-2x.题组二题组二换元法求解析式1.(2022·全国·高三专题练习)已知SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0的值为_________.【答案】3【解析】令SKIPIF1<0,则SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.故答案为:3.2.(2022·全国·高一专题练习)已知SKIPIF1<0,则有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】设SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以函数SKIPIF1<0的解析式为SKIPIF1<0,SKIPIF1<0.故选:B.3.(2022·全国·课时练习)已知SKIPIF1<0,则SKIPIF1<0(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】令SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0;所以SKIPIF1<0.故选:D.4.(2023·全国·高三专题练习)已知SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因为SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,则SKIPIF1<0,所以SKIPIF1<0,因此,SKIPIF1<0.故选:B.5.(2022·河南·临颍县第一高级中学高二阶段练习(文))已知SKIPIF1<0,则SKIPIF1<0(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因为SKIPIF1<0,所以SKIPIF1<0.故选:A6.(2022·山西运城·高二阶段练习)已知函数SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0(
)A.1 B.9 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】令SKIPIF1<0,则SKIPIF1<0,所以SKIPIF1<0,所以函数SKIPIF1<0的解析式为SKIPIF1<0.所以SKIPIF1<0故选:D.7.(2023·全国·高三专题练习)设SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因为SKIPIF1<0,所以SKIPIF1<0又因为SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故选:B.8.(2022·江苏)设函数SKIPIF1<0,则SKIPIF1<0的表达式为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】令SKIPIF1<0,则SKIPIF1<0且SKIPIF1<0,所以,SKIPIF1<0,因此,SKIPIF1<0.故选:B.9.(2022·甘肃·甘南藏族自治州合作第一中学)已知f(SKIPIF1<0x-1)=2x-5,且f(a)=6,则a等于()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】令SKIPIF1<0,则SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,由题知SKIPIF1<0,解得SKIPIF1<0.故选:B10.(2022·陕西·略阳县天津高级中学二模(理))若SKIPIF1<0,则SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由SKIPIF1<0,令SKIPIF1<0,则SKIPIF1<0,所以,对于SKIPIF1<0,即SKIPIF1<0.故选:A11(2022·全国·高三专题练习)已知函数SKIPIF1<0,求SKIPIF1<0的解析式.【答案】SKIPIF1<0【解析】由题意知SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0,则SKIPIF1<0.①
则SKIPIF1<0(SKIPIF1<0),代入函数式得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0.②由①②知,SKIPIF1<0,所以SKIPIF1<0.12.(2022·全国·课时练习)(多选)若函数SKIPIF1<0,则(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【解析】令SKIPIF1<0,则SKIPIF1<0,所以SKIPIF1<0,则SKIPIF1<0,故C错误;SKIPIF1<0,故A正确;SKIPIF1<0,故B错误;SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),故D正确.故选:AD.13(2022·黑龙江)若函数SKIPIF1<0,则SKIPIF1<0__________.【答案】SKIPIF1<0【解析】令SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0函数SKIPIF1<0的解析式为SKIPIF1<0.故答案为:SKIPIF1<0.题组三题组三解方程组求解析式1(2022·广东)已知函数f(x)满足f(x)+2f(3-x)=x2,则f(x)的解析式为(
)A.f(x)=x2-12x+18B.f(x)=SKIPIF1<0-4x+6C.f(x)=6x+9D.f(x)=2x+3【答案】B【解析】用SKIPIF1<0代替原方程中的SKIPIF1<0得:f(3-x)+2f[3-(3-x)]=f(3-x)+2f(x)=(3-x)2=x2-6x+9,∴SKIPIF1<0消去SKIPIF1<0得:-3f(x)=-x2+12x-18,SKIPIF1<0.故选:B2.(2021·陕西安康)已知函数SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由已知可得SKIPIF1<0,解得SKIPIF1<0,其中SKIPIF1<0,因此,SKIPIF1<0.故选:C.3.(2022·广西)若函数SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因为函数SKIPIF1<0满足SKIPIF1<0---①所以SKIPIF1<0---②联立①②,得SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0故选:A4.(2021·全国·课时练习)已知SKIPIF1<0,求SKIPIF1<0的解析式.【答案】SKIPIF1<0,SKIPIF1<0.【解析】利用方程组法求解即可:因为SKIPIF1<0,所以SKIPIF1<0,消去SKIPIF1<0解得SKIPIF1<0,SKIPIF1<0故答案为:SKIPIF1<0,SKIPIF1<0.5(2022广西)若对任意实数SKIPIF1<0,均有SKIPIF1<0,求SKIPIF1<0=【答案】SKIPIF1<0.【解析】利用方程组法求解即可;∵SKIPIF1<0(1)∴SKIPIF1<0(2)由SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0.故答案为:SKIPIF1<0.6.(2022·全国·高三专题练习)已知函数f(x)满足3f(x﹣1)+2f(1﹣x)=2x,则f(x)的解析式为___________.【答案】f(x)=2xSKIPIF1<0【解析】根据题意3f(x﹣1)+2f(1﹣x)=2x,用x+2代替x可得3f(x+1)+2f(﹣1﹣x)=2x+4,…①用﹣x代替x可得3f(﹣x﹣1)+2f(1+x)=﹣2x…②①②消去f(﹣1﹣x)可得:5f(1+x)=10x+12,∴f(x+1)=2xSKIPIF1<02(x+1)SKIPIF1<0,f(x)=2xSKIPIF1<0,故答案为:f(x)=2xSKIPIF1<0.7.(2021·湖北)已知函数SKIPIF1<0满足SKIPIF1<0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45177-2024人工光型植物工厂光环境技术规范
- racemic-6-7-Dihydroxy-cannabichromene-生命科学试剂-MCE-9913
- 2-Isopropyl-5-methylanisole-生命科学试剂-MCE-4177
- 2025年度解除租赁合同简易协议书(体育场馆)
- 二零二五年度城市商业圈门市房租赁与商业资源整合合同
- 二零二五年度电子租房合同附租客租赁满意度调查
- 2025年度员工离职补偿及保密协议
- 二零二五年度社区车位使用权共有管理协议书
- 施工现场施工防火制度
- 教育机构电力供应的未来趋势-分布式变电站
- 2025-2030年中国电动高尔夫球车市场运行状况及未来发展趋势分析报告
- 河南省濮阳市2024-2025学年高一上学期1月期末考试语文试题(含答案)
- 长沙市2025届中考生物押题试卷含解析
- 2024年08月北京中信银行北京分行社会招考(826)笔试历年参考题库附带答案详解
- 2024年芽苗菜市场调查报告
- 苏教版二年级数学下册全册教学设计
- 职业技术学院教学质量监控与评估处2025年教学质量监控督导工作计划
- 金字塔原理与结构化思维考核试题及答案
- 广东省梅州市2023-2024学年七年级上学期期末数学试题
- 《革兰阳性球菌》课件
- 基础护理学导尿操作
评论
0/150
提交评论