版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年重庆市永川区高三下学期第三次调研考试数学试题试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④2.在中,点为中点,过点的直线与,所在直线分别交于点,,若,,则的最小值为()A. B.2 C.3 D.3.不等式的解集记为,有下面四个命题:;;;.其中的真命题是()A. B. C. D.4.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为()A. B.C. D.5.已知平面和直线a,b,则下列命题正确的是()A.若∥,b∥,则∥ B.若,,则∥C.若∥,,则 D.若,b∥,则6.()A. B. C.1 D.7.函数的单调递增区间是()A. B. C. D.8.已知正方体的体积为,点,分别在棱,上,满足最小,则四面体的体积为A. B. C. D.9.已知定义在R上的函数(m为实数)为偶函数,记,,则a,b,c的大小关系为()A. B. C. D.10.已知数列满足:)若正整数使得成立,则()A.16 B.17 C.18 D.1911.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则()A. B. C. D.12.若圆锥轴截面面积为,母线与底面所成角为60°,则体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.(5分)已知,且,则的值是____________.14.在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求直线和曲线的普通方程;(2)设为曲线上的动点,求点到直线距离的最小值及此时点的坐标.15.在平面直角坐标系中,若函数在处的切线与圆存在公共点,则实数的取值范围为_____.16.二项式的展开式的各项系数之和为_____,含项的系数为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)讨论函数的单调性;(2)已知在处的切线与轴垂直,若方程有三个实数解、、(),求证:.18.(12分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.19.(12分)已知函数.(1)解不等式;(2)记函数的最大值为,若,证明:.20.(12分)如图,四棱锥中,底面ABCD为菱形,平面ABCD,BD交AC于点E,F是线段PC中点,G为线段EC中点.Ⅰ求证:平面PBD;Ⅱ求证:.21.(12分)在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cosθ,直线l的参数方程为(t为参数,α为直线的倾斜角).(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C有唯一的公共点,求角α的大小.22.(10分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F分别是棱AB,PC的中点.求证:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择.【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选:D本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.2.B【解析】
由,,三点共线,可得,转化,利用均值不等式,即得解.【详解】因为点为中点,所以,又因为,,所以.因为,,三点共线,所以,所以,当且仅当即时等号成立,所以的最小值为1.故选:B本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.3.A【解析】
作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【详解】作出可行域如图所示,当时,,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.4.B【解析】
选B.考点:圆心坐标5.C【解析】
根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足∥,b∥,故本命题不正确;B:当时,也可以满足,,故本命题不正确;C:根据平行线的性质可知:当∥,,时,能得到,故本命题是正确的;D:当时,也可以满足,b∥,故本命题不正确.故选:C本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.6.A【解析】
利用复数的乘方和除法法则将复数化为一般形式,结合复数的模长公式可求得结果.【详解】,,因此,.故选:A.本题考查复数模长的计算,同时也考查了复数的乘方和除法法则的应用,考查计算能力,属于基础题.7.D【解析】
利用辅助角公式,化简函数的解析式,再根据正弦函数的单调性,并采用整体法,可得结果.【详解】因为,由,解得,即函数的增区间为,所以当时,增区间的一个子集为.故选D.本题考查了辅助角公式,考查正弦型函数的单调递增区间,重点在于把握正弦函数的单调性,同时对于整体法的应用,使问题化繁为简,难度较易.8.D【解析】
由题意画出图形,将所在的面延它们的交线展开到与所在的面共面,可得当时最小,设正方体的棱长为,得,进一步求出四面体的体积即可.【详解】解:如图,
∵点M,N分别在棱上,要最小,将所在的面延它们的交线展开到与所在的面共面,三线共线时,最小,
∴
设正方体的棱长为,则,∴.
取,连接,则共面,在中,设到的距离为,
设到平面的距离为,
.
故选D.本题考查多面体体积的求法,考查了多面体表面上的最短距离问题,考查计算能力,是中档题.9.B【解析】
根据f(x)为偶函数便可求出m=0,从而f(x)=﹣1,根据此函数的奇偶性与单调性即可作出判断.【详解】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故选B.本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.10.B【解析】
计算,故,解得答案.【详解】当时,,即,且.故,,故.故选:.本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.11.B【解析】
根据空余部分体积相等列出等式即可求解.【详解】在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以.故选:B本题考查圆柱的体积,属于基础题.12.D【解析】
设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式计算即可.【详解】设圆锥底面圆的半径为,由已知,,解得,所以圆锥的体积.故选:D本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由于,且,则,得,则.14.(1),;(2),.【解析】
(1)利用代入消参的方法即可将两个参数方程转化为普通方程;(2)利用参数方程,结合点到直线的距离公式,将问题转化为求解二次函数最值的问题,即可求得.【详解】(1)直线的普通方程为.在曲线的参数方程中,,所以曲线的普通方程为.(2)设点.点到直线的距离.当时,,所以点到直线的距离的最小值为.此时点的坐标为.本题考查将参数方程转化为普通方程,以及利用参数方程求距离的最值问题,属中档题.15.【解析】
利用导数的几何意义可求得函数在处的切线,再根据切线与圆存在公共点,利用圆心到直线的距离满足的条件列式求解即可.【详解】解:由条件得到又所以函数在处的切线为,即圆方程整理可得:即有圆心且所以圆心到直线的距离,即.解得或,故答案为:.本题主要考查了导数的几何意义求解切线方程的问题,同时也考查了根据直线与圆的位置关系求解参数范围的问题,属于基础题.16.【解析】
将代入二项式可得展开式各项系数之和,写出二项展开式通项,令的指数为,求出参数的值,代入通项即可得出项的系数.【详解】将代入二项式可得展开式各项系数和为.二项式的展开式通项为,令,解得,因此,展开式中含项的系数为.故答案为:;.本题考查了二项式定理及二项式展开式通项公式,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)①当时,在单调递增,②当时,单调递增区间为,,单调递减区间为(2)证明见解析【解析】
(1)先求解导函数,然后对参数分类讨论,分析出每种情况下函数的单调性即可;(2)根据条件先求解出的值,然后构造函数分析出之间的关系,再构造函数分析出之间的关系,由此证明出.【详解】(1),①当时,恒成立,则在单调递增②当时,令得,解得,又,∴∴当时,,单调递增;当时,,单调递减;当时,,单调递增.(2)依题意得,,则由(1)得,在单调递增,在上单调递减,在上单调递增∴若方程有三个实数解,则法一:双偏移法设,则∴在上单调递增,∴,∴,即∵,∴,其中,∵在上单调递减,∴,即设,∴在上单调递增,∴,∴,即∵,∴,其中,∵在上单调递增,∴,即∴.法二:直接证明法∵,,在上单调递增,∴要证,即证设,则∴在上单调递减,在上单调递增∴,∴,即(注意:若没有证明,扣3分)关于的证明:(1)且时,(需要证明),其中∴∴∴(2)∵,∴∴,即∵,,∴,则∴本题考查函数与倒导数的综合应用,难度较难.(1)对于含参函数单调性的分析,可通过分析参数的临界值,由此分类讨论函数单调性;(2)利用导数证明不等式常用方法:构造函数,利用新函数的单调性确定函数的最值,从而达到证明不等式的目的.18.(1);(2)不存在,理由见解析【解析】
(1)写出,根据,斜率乘积为-1,建立等量关系求解离心率;(2)写出直线AB的方程,根据韦达定理求出点B的坐标,计算出弦长,根据垂直关系同理可得,利用等式即可得解.【详解】(1)由题可得,过点作直线交椭圆于点,且,直线交轴于点.点为椭圆的右顶点时,的坐标为,即,,化简得:,即,解得或(舍去),所以;(2)椭圆的方程为,由(1)可得,联立得:,设B的横坐标,根据韦达定理,即,,所以,同理可得若存在使得成立,则,化简得:,,此方程无解,所以不存在使得成立.此题考查求椭圆离心率,根据直线与椭圆的位置关系解决弦长问题,关键在于熟练掌握解析几何常用方法,尤其是韦达定理在解决解析几何问题中的应用.19.(1);(2)证明见解析【解析】
(1)将函数整理为分段函数形式可得,进而分类讨论求解不等式即可;(2)先利用绝对值不等式的性质得到的最大值为3,再利用均值定理证明即可.【详解】(1)①当时,恒成立,;②当时,,即,;③当时,显然不成立,不合题意;综上所述,不等式的解集为.(2)由(1)知,于是由基本不等式可得(当且仅当时取等号)(当且仅当时取等号)(当且仅当时取等号)上述三式相加可得(当且仅当时取等号),,故得证.本题考查解绝对值不等式和利用均值定理证明不等式,考查绝对值不等式的最值的应用,解题关键是掌握分类讨论解决带绝对值不等式的方法,考查了分析能力和计算能力,属于中档题.20.(1)见解析;(2)见解析.【解析】分析:(1)先证明,再证明FG//平面PBD.(2)先证明平面,再证明BD⊥FG.详解:证明:(1)连结PE,因为G.、F为EC和PC的中点,,又平面,平面,所以平面(II)因为菱形ABCD,所以,又PA⊥面ABCD,平面,所以,因为平面,平面,且,平面,平面,∴BD⊥FG.点睛:(1)本题主要考查空间位置关系的证明,意在考查学生对这些基础知识的掌握水平和空间想象转化能力.(2)证明空间位置关系,一般有几何法和向量法,本题利用几何法比较方便.21.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度文化产业发展基金担保合同范本3篇
- 个人融资借款利息合同样本版B版
- 专用实验仪器采购合同范本2024版B版
- 高等职业学校办学条件重点监测指标
- 2025年海南鲜品品牌IP授权与开发合同3篇
- 2024年适用最高限额担保合同范本一
- 福建省南平市松溪县郑墩中学2020-2021学年高二数学理月考试题含解析
- 2024年沥青物资采购协议样本版
- 2024年项目借调人员合同集
- 2024年物业服务管理合同标的说明
- 土建工程定额计价之建筑工程定额
- 学校安全工作汇报PPT
- 成都大熊猫基地英文导游词-四川大熊猫基地解说词
- 一年级语文上册《两件宝》教案1
- 咨询公司工作总结(共5篇)
- GB/T 38836-2020农村三格式户厕建设技术规范
- 小品《天宫贺岁》台词剧本手稿
- 京东商业计划书课件
- 肥料采购验收单模板
- 部编版五年级下册语文根据课文内容填空(常用)
- 中铁集团会计核算手册
评论
0/150
提交评论