版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年上海市华师大第一附属中学高三第一次(3月一模)数学试题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为()A. B.C. D.2.已知集合,集合,则等于()A. B.C. D.3.已知实数满足不等式组,则的最小值为()A. B. C. D.4.设,满足,则的取值范围是()A. B. C. D.5.已知x,y满足不等式组,则点所在区域的面积是()A.1 B.2 C. D.6.设,则A. B. C. D.7.已知函数,若曲线在点处的切线方程为,则实数的取值为()A.-2 B.-1 C.1 D.28.设函数,则,的大致图象大致是的()A. B.C. D.9.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于的偶数可以表示为两个素数的和”(注:如果一个大于的整数除了和自身外无其他正因数,则称这个整数为素数),在不超过的素数中,随机选取个不同的素数、,则的概率是()A. B. C. D.10.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)11.已知,若则实数的取值范围是()A. B. C. D.12.已知函数,若,则的最小值为()参考数据:A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为椭圆在第一象限上的点,则的最小值为________.14.函数的值域为_________.15.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为______________.(用数字作答)16.设全集,集合,,则集合______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的导函数的两个零点为和.(1)求的单调区间;(2)若的极小值为,求在区间上的最大值.18.(12分)已知抛物线的准线过椭圆C:(a>b>0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4.(1)求椭圆C的标准方程;(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.19.(12分)已知函数是自然对数的底数.(1)若,讨论的单调性;(2)若有两个极值点,求的取值范围,并证明:.20.(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,求四面体的体积.21.(12分)△ABC的内角的对边分别为,已知△ABC的面积为(1)求;(2)若求△ABC的周长.22.(10分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
将正四面体的展开图还原为空间几何体,三点重合,记作,取中点,连接,即为与直线所成的角,表示出三角形的三条边长,用余弦定理即可求得.【详解】将展开的正四面体折叠,可得原正四面体如下图所示,其中三点重合,记作:则为中点,取中点,连接,设正四面体的棱长均为,由中位线定理可得且,所以即为与直线所成的角,,由余弦定理可得,所以直线与直线所成角的余弦值为,故选:C.本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.2.B【解析】
求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.3.B【解析】
作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.4.C【解析】
首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中的取值范围.【详解】由题知,满足,可行域如下图所示,可知目标函数在点处取得最小值,故目标函数的最小值为,故的取值范围是.故选:D.本题主要考查了线性规划中目标函数的取值范围的问题,属于基础题.5.C【解析】
画出不等式表示的平面区域,计算面积即可.【详解】不等式表示的平面区域如图:直线的斜率为,直线的斜率为,所以两直线垂直,故为直角三角形,易得,,,,所以阴影部分面积.故选:C.本题考查不等式组表示的平面区域面积的求法,考查数形结合思想和运算能力,属于常考题.6.C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.7.B【解析】
求出函数的导数,利用切线方程通过f′(0),求解即可;【详解】f(x)的定义域为(﹣1,+∞),因为f′(x)a,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,可得1﹣a=2,解得a=﹣1,故选:B.本题考查函数的导数的几何意义,切线方程的求法,考查计算能力.8.B【解析】
采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.【详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.9.B【解析】
先列举出不超过的素数,并列举出所有的基本事件以及事件“在不超过的素数中,随机选取个不同的素数、,满足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】不超过的素数有:、、、、、,在不超过的素数中,随机选取个不同的素数,所有的基本事件有:、、、、、、、、、、、、、、,共种情况,其中,事件“在不超过的素数中,随机选取个不同的素数、,且”包含的基本事件有:、、、,共种情况,因此,所求事件的概率为.故选:B.本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.10.B【解析】M=y|y=N==x|∴M∩N=(1,2).故选B.11.C【解析】
根据,得到有解,则,得,,得到,再根据,有,即,可化为,根据,则的解集包含求解,【详解】因为,所以有解,即有解,所以,得,,所以,又因为,所以,即,可化为,因为,所以的解集包含,所以或,解得,故选:C本题主要考查一元二次不等式的解法及集合的关系的应用,还考查了运算求解的能力,属于中档题,12.A【解析】
首先的单调性,由此判断出,由求得的关系式.利用导数求得的最小值,由此求得的最小值.【详解】由于函数,所以在上递减,在上递增.由于,,令,解得,所以,且,化简得,所以,构造函数,.构造函数,,所以在区间上递减,而,,所以存在,使.所以在上大于零,在上小于零.所以在区间上递增,在区间上递减.而,所以在区间上的最小值为,也即的最小值为,所以的最小值为.故选:A本小题主要考查利用导数研究函数的最值,考查分段函数的图像与性质,考查化归与转化的数学思想方法,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
利用椭圆的参数方程,将所求代数式的最值问题转化为求三角函数最值问题,利用两角和的正弦公式和三角函数的性质,以及求导数、单调性和极值,即可得到所求最小值.【详解】解:设点,,其中,,由,,,可设,导数为,由,可得,可得或,由,,可得,即,可得,由可得函数递减;由,可得函数递增,可得时,函数取得最小值,且为,则的最小值为1.故答案为:1.本题考查椭圆参数方程的应用,利用三角函数的恒等变换和导数法求函数最值的方法,考查化简变形能力和运算能力,属于难题.14.【解析】
利用换元法,得到,利用导数求得函数的单调性和最值,即可得到函数的值域,得到答案.【详解】由题意,可得,令,,即,则,当时,,当时,,即在为增函数,在为减函数,又,,,故函数的值域为:.本题主要考查了三角函数的最值,以及利用导数研究函数的单调性与最值,其中解答中合理利用换元法得到函数,再利用导数求解函数的单调性与最值是解答的关键,着重考查了推理与预算能力,属于基础题.15.5040.【解析】分两类,一类是甲乙都参加,另一类是甲乙中选一人,方法数为。填5040.利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,甲与乙是两个特殊元素,对于特殊元素“优先法”,所以有了分类。本题还涉及不相邻问题,采用“插空法”。16.【解析】
分别解得集合A与集合B的补集,再由集合交集的运算法则计算求得答案.【详解】由题可知,集合A中集合B的补集,则故答案为:本题考查集合的交集与补集运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)单调递增区间是,单调递减区间是和;(2)最大值是.【解析】
(1)求得,由题意可知和是函数的两个零点,根据函数的符号变化可得出的符号变化,进而可得出函数的单调递增区间和递减区间;(2)由(1)中的结论知,函数的极小值为,进而得出,解出、、的值,然后利用导数可求得函数在区间上的最大值.【详解】(1),令,因为,所以的零点就是的零点,且与符号相同.又因为,所以当时,,即;当或时,,即.所以,函数的单调递增区间是,单调递减区间是和;(2)由(1)知,是的极小值点,所以有,解得,,,所以.因为函数的单调递增区间是,单调递减区间是和.所以为函数的极大值,故在区间上的最大值取和中的最大者,而,所以函数在区间上的最大值是.本题考查利用导数求函数的单调区间与最值,考查计算能力,属于中等题.18.(1);(2)或.【解析】
(1)由抛物线的准线方程求出的值,确定左焦点坐标,再由点F到直线l:的距离为4,求出即可;(2)设直线方程,与椭圆方程联立,运用根与系数关系和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.【详解】(1)抛物线的准线方程为,,直线,点F到直线l的距离为,,所以椭圆的标准方程为;(2)依题意斜率不为0,又过点,设方程为,联立,消去得,,,设,,,,线段AB的中垂线交直线l于点Q,所以横坐标为3,,,,平方整理得,解得或(舍去),,所求的直线方程为或.本题考查椭圆的方程以及直线与椭圆的位置关系,要熟练应用根与系数关系、相交弦长公式,合理运用两点间的距离公式,考查计算求解能力,属于中档题.19.(1)减区间是,增区间是;(2),证明见解析.【解析】
(1)当时,求得函数的导函数以及二阶导函数,由此求得的单调区间.(2)令求得,构造函数,利用导数求得的单调区间、极值和最值,结合有两个极值点,求得的取值范围.将代入列方程组,由证得.【详解】(1),,又,所以在单增,从而当时,递减,当时,递增.(2).令,令,则故在递增,在递减,所以.注意到当时,所以当时,有一个极值点,当时,有两个极值点,当时,没有极值点,综上因为是的两个极值点,所以不妨设,得,因为在递减,且,所以又所以本小题主要考查利用导数研究函数的单调区间,考查利用导数研究函数的极值点,考查利用导数证明不等式,考查化归与转化的数学思想方法,属于难题.20.(1)证明见解析;(2).【解析】
(1)取中点,连接,根据等腰三角形的性质得到,利用全等三角形证得,由此证得平面,进而证得平面平面.(2)由(1)知平面,即是四面体的面上的高,结合锥体体积公式,求得四面体的体积.【详解】(1)证明:如图,取中点,连接,由则,则,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面体的面上的高,且.在中,,由勾股定理易知故四面体的体积本小题主要考查面面垂直的证明,考查锥体体积计算,考查空间想象能力和逻辑推理能力,属于中档题.21.(1)(2).【解析】试题分析:(1)由三角形面积公式建立等式,再利用正弦定理将边化成角,从而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淘宝客服试用期转正工作总结
- 活着的读书心得
- 23.1.1 锐角的三角函数 同步练习
- 23.2 相似图形 同步练习
- 江苏省扬州市扬大附中2024-2025学年高一上学期联考英语试卷(含解析)
- 河北省秦皇岛市卢龙县2024-2025学年八年级上学期期中地理试题
- 天津地区高考语文五年高考真题汇编-名篇名句默写
- 语文教学论教案 第二章 语文教材
- 个人车位买卖协议书范本
- 联合体投标协议书模板2024年
- 高级社会工作师直接服务个案分析六
- 消防安全培训及应急演练主题教育课件PPT模板宣传PPT动态PPT
- 国四部分重型柴油车排气后处理系统型号
- 对当前矛盾纠纷主要类型、特点及解决办法的思考
- 砖厂开工安全记录内容
- 钢筋保护层和钢筋间距质量控制学习体会
- 日本金融商品交易法
- FURUNO雷达使用说明书0001
- 大华网络摄像机检测报告DHIPCHFW12XYZM
- 湘美版 六年级(上)第5课 纸魔方 (作品展示PPT)
- T管护理-PPT课件 (2)
评论
0/150
提交评论