2024-2025学年南阳市重点中学下学期高三年级一调考试(联考卷)数学试题含解析_第1页
2024-2025学年南阳市重点中学下学期高三年级一调考试(联考卷)数学试题含解析_第2页
2024-2025学年南阳市重点中学下学期高三年级一调考试(联考卷)数学试题含解析_第3页
2024-2025学年南阳市重点中学下学期高三年级一调考试(联考卷)数学试题含解析_第4页
2024-2025学年南阳市重点中学下学期高三年级一调考试(联考卷)数学试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年南阳市重点中学下学期高三年级一调考试(联考卷)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为()A. B. C. D.2.向量,,且,则()A. B. C. D.3.设正项等差数列的前项和为,且满足,则的最小值为A.8 B.16 C.24 D.364.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()cm3A. B. C. D.5.在区间上随机取一个数,使直线与圆相交的概率为()A. B. C. D.6.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为()A. B. C. D.7.运行如图所示的程序框图,若输出的值为300,则判断框中可以填()A. B. C. D.8.已知函数若恒成立,则实数的取值范围是()A. B. C. D.9.已知向量,,则与的夹角为()A. B. C. D.10.已知定义在上的函数,若函数为偶函数,且对任意,,都有,若,则实数的取值范围是()A. B. C. D.11.如图所示,网格纸上小正方形的边长为,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为()A. B. C. D.12.已知为圆的一条直径,点的坐标满足不等式组则的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,斜率为2的直线与的交点为,若,则直线的方程为___________.14.如图所示,直角坐标系中网格小正方形的边长为1,若向量、、满足,则实数的值为_______.15.已知双曲线的左右焦点为,过作轴的垂线与相交于两点,与轴相交于.若,则双曲线的离心率为_________.16.如图是一个算法的伪代码,运行后输出的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:空气质量优良轻度污染中度污染重度污染严重污染天数61418272510(1)从空气质量指数属于,的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天的经济损失(单位:元)与空气质量指数的关系式为,试估计该企业一个月(按30天计算)的经济损失的数学期望.18.(12分)设点,分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为1.(1)求椭圆的方程;(2)如图,动直线与椭圆有且仅有一个公共点,点,是直线上的两点,且,,求四边形面积的最大值.19.(12分)设函数,,其中,为正实数.(1)若的图象总在函数的图象的下方,求实数的取值范围;(2)设,证明:对任意,都有.20.(12分)如图所示,四棱柱中,底面为梯形,,,,,,.(1)求证:;(2)若平面平面,求二面角的余弦值.21.(12分)如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线.(1)求曲线的方程;(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.22.(10分)在平面直角坐标系中,已知直线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的极坐标为,直线与曲线的交点为,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.【详解】由题意,直线的斜率为,可得直线的方程为,把直线的方程代入双曲线,可得,设,则,由的中点为,可得,解答,又由,即,解得,所以双曲线的标准方程为.故选:D.本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.2.D【解析】

根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解】故选:D本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.3.B【解析】

方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.4.D【解析】解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,结合图中数据,计算它的体积为:V=V三棱柱+V半圆柱=×2×2×1+•π•12×1=(6+1.5π)cm1.故答案为6+1.5π.点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可.5.C【解析】

根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.【详解】因为圆心,半径,直线与圆相交,所以,解得所以相交的概率,故选C.本题主要考查了直线与圆的位置关系,几何概型,属于中档题.6.D【解析】

讨论,,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【详解】当时,,故,函数在上单调递增,在上单调递减,且;当时,;当时,,,函数单调递减;如图所示画出函数图像,则,故.故选:.本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.7.B【解析】

由,则输出为300,即可得出判断框的答案【详解】由,则输出的值为300,,故判断框中应填?故选:.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.8.D【解析】

由恒成立,等价于的图像在的图像的上方,然后作出两个函数的图像,利用数形结合的方法求解答案.【详解】因为由恒成立,分别作出及的图象,由图知,当时,不符合题意,只须考虑的情形,当与图象相切于时,由导数几何意义,此时,故.故选:D此题考查的是函数中恒成立问题,利用了数形结合的思想,属于难题.9.B【解析】

由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.【详解】解:由题意得,设与的夹角为,,由于向量夹角范围为:,∴.故选:B.本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.10.A【解析】

根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案.【详解】解:因为函数为偶函数,所以函数的图象关于对称,因为对任意,,都有,所以函数在上为减函数,则,解得:.即实数的取值范围是.故选:A.本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题.11.B【解析】

根据三视图可以得到原几何体为三棱锥,且是有三条棱互相垂直的三棱锥,根据几何体的各面面积可得最大面的面积.【详解】解:分析题意可知,如下图所示,该几何体为一个正方体中的三棱锥,最大面的表面边长为的等边三角形,故其面积为,故选B.本题考查了几何体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题.12.D【解析】

首先将转化为,只需求出的取值范围即可,而表示可行域内的点与圆心距离,数形结合即可得到答案.【详解】作出可行域如图所示设圆心为,则,过作直线的垂线,垂足为B,显然,又易得,所以,,故.故选:D.本题考查与线性规划相关的取值范围问题,涉及到向量的线性运算、数量积、点到直线的距离等知识,考查学生转化与划归的思想,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

设直线l的方程为,,联立直线l与抛物线C的方程,得到A,B点横坐标的关系式,代入到中,解出t的值,即可求得直线l的方程【详解】设直线.由题设得,故,由题设可得.

由可得,

则,从而,得,所以l的方程为,故答案为:本题主要考查了直线的方程,抛物线的定义,抛物线的简单几何性质,直线与抛物线的位置关系,属于中档题.14.【解析】

根据图示分析出、、的坐标表示,然后根据坐标形式下向量的数量积为零计算出的取值.【详解】由图可知:,所以,又因为,所以,所以.故答案为:.本题考查向量的坐标表示以及坐标形式下向量的数量积运算,难度较易.已知,若,则有.15.【解析】

由已知可得,结合双曲线的定义可知,结合,从而可求出离心率.【详解】解:,,又,则.,,,即解得,即.故答案为:.本题考查了双曲线的定义,考查了双曲线的性质.本题的关键是根据几何关系,分析出.关于圆锥曲线的问题,一般如果能结合几何性质,可大大减少计算量.16.13【解析】根据题意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不满足条件,故得到此时输出的b值为13.故答案为13.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)9060元【解析】

(1)根据古典概型概率公式和组合数的计算可得所求概率;(2)任选一天,设该天的经济损失为元,分别求出,,,进而求得数学期望,据此得出该企业一个月经济损失的数学期望.【详解】解:(1)设为选取的3天中空气质量为优的天数,则.(2)任选一天,设该天的经济损失为元,则的可能取值为0,220,1480,,,,所以(元),故该企业一个月的经济损失的数学期望为(元).本题考查古典概型概率公式和组合数的计算及数学期望,属于基础题.18.(1);(2)2.【解析】

(1)利用的最小值为1,可得,,即可求椭圆的方程;(2)将直线的方程代入椭圆的方程中,得到关于的一元二次方程,由直线与椭圆仅有一个公共点知,即可得到,的关系式,利用点到直线的距离公式即可得到,.当时,设直线的倾斜角为,则,即可得到四边形面积的表达式,利用基本不等式的性质,结合当时,四边形是矩形,即可得出的最大值.【详解】(1)设,则,,,,由题意得,,椭圆的方程为;

(2)将直线的方程代入椭圆的方程中,得.

由直线与椭圆仅有一个公共点知,,化简得:.

设,,当时,设直线的倾斜角为,则,,,,∴当时,,,.当时,四边形是矩形,.

所以四边形面积的最大值为2.本题主要考查椭圆的方程与性质、直线方程、直线与椭圆的位置关系、向量知识、二次函数的单调性、基本不等式的性质等基础知识,考查运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想.19.(1)(2)证明见解析【解析】

(1)据题意可得在区间上恒成立,利用导数讨论函数的单调性,从而求出满足不等式的的取值范围;(2)不等式整理为,由(1)可知当时,,利用导数判断函数的单调性从而证明在区间上成立,从而证明对任意,都有.【详解】(1)解:因为函数的图象恒在的图象的下方,所以在区间上恒成立.设,其中,所以,其中,.①当,即时,,所以函数在上单调递增,,故成立,满足题意.②当,即时,设,则图象的对称轴,,,所以在上存在唯一实根,设为,则,,,所以在上单调递减,此时,不合题意.综上可得,实数的取值范围是.(2)证明:由题意得,因为当时,,,所以.令,则,所以在上单调递增,,即,所以,从而.由(1)知当时,在上恒成立,整理得.令,则要证,只需证.因为,所以在上单调递增,所以,即在上恒成立.综上可得,对任意,都有成立.本题考查导数在研究函数中的作用,利用导数判断函数单调性与求函数最值,利用导数证明不等式,属于难题.20.(1)证明见解析(2)【解析】

(1)取中点为,连接,,,,根据线段关系可证明为等边三角形,即可得;由为等边三角形,可得,从而由线面垂直判断定理可证明平面,即可证明.(2)以为原点,,,为,,轴建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【详解】(1)证明:取中点为,连接,,,如下图所示:因为,,,所以,故为等边三角形,则.连接,因为,,所以为等边三角形,则.又,所以平面.因为平面,所以.(2)由(1)知,因为平面平面,平面,所以平面,以为原点,,,为,,轴建立如图所示的空间直角坐标系,易求,则,,,,则,,.设平面的法向量,则即令,则,,故.设平面的法向量,则则令,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论