2024-2025学年江苏省连云港等四市高三数学试题4月月考试卷含解析_第1页
2024-2025学年江苏省连云港等四市高三数学试题4月月考试卷含解析_第2页
2024-2025学年江苏省连云港等四市高三数学试题4月月考试卷含解析_第3页
2024-2025学年江苏省连云港等四市高三数学试题4月月考试卷含解析_第4页
2024-2025学年江苏省连云港等四市高三数学试题4月月考试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年江苏省连云港等四市高三数学试题4月月考试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.对于定义在上的函数,若下列说法中有且仅有一个是错误的,则错误的一个是()A.在上是减函数 B.在上是增函数C.不是函数的最小值 D.对于,都有2.已知正项等比数列的前项和为,且,则公比的值为()A. B.或 C. D.3.已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为()A. B.C. D.4.已知、,,则下列是等式成立的必要不充分条件的是()A. B.C. D.5.已知,,那么是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件7.已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为()A. B. C. D.8.已知数列为等差数列,为其前项和,,则()A.7 B.14 C.28 D.849.设函数,若在上有且仅有5个零点,则的取值范围为()A. B. C. D.10.已知函数是上的偶函数,是的奇函数,且,则的值为()A. B. C. D.11.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是()A. B.C. D.12.设a=log73,,c=30.7,则a,b,c的大小关系是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的一条渐近线方程为,则________.14.直线与抛物线交于两点,若,则弦的中点到直线的距离等于________.15.如图所示的流程图中,输出的值为______.16.在边长为2的正三角形中,,则的取值范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求不等式的解集;(2)若关于的不等式在上恒成立,求实数的取值范围.18.(12分)已知的图象在处的切线方程为.(1)求常数的值;(2)若方程在区间上有两个不同的实根,求实数的值.19.(12分)已知中心在原点的椭圆的左焦点为,与轴正半轴交点为,且.(1)求椭圆的标准方程;(2)过点作斜率为、的两条直线分别交于异于点的两点、.证明:当时,直线过定点.20.(12分)设函数f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集为{x|x≤1},求实数a的值;(2)证明:f(x).21.(12分)已知函数(I)若讨论的单调性;(Ⅱ)若,且对于函数的图象上两点,存在,使得函数的图象在处的切线.求证:.22.(10分)设函数.(1)解不等式;(2)记的最大值为,若实数、、满足,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

根据函数对称性和单调性的关系,进行判断即可.【详解】由得关于对称,若关于对称,则函数在上不可能是单调的,故错误的可能是或者是,若错误,则在,上是减函数,在在上是增函数,则为函数的最小值,与矛盾,此时也错误,不满足条件.故错误的是,故选:.本题主要考查函数性质的综合应用,结合对称性和单调性的关系是解决本题的关键.2.C【解析】

由可得,故可求的值.【详解】因为,所以,故,因为正项等比数列,故,所以,故选C.一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3)为等比数列()且公比为.3.A【解析】

求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a,b关系,即可得到双曲线的渐近线方程.【详解】抛物线y2=2px(p>0)的焦点坐标为(1,0),则p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以双曲线的渐近线方程为:y=±.故选:A.本题考查双曲线的离心率以及双曲线渐近线方程的求法,涉及抛物线的简单性质的应用.4.D【解析】

构造函数,,利用导数分析出这两个函数在区间上均为减函数,由得出,分、、三种情况讨论,利用放缩法结合函数的单调性推导出或,再利用余弦函数的单调性可得出结论.【详解】构造函数,,则,,所以,函数、在区间上均为减函数,当时,则,;当时,,.由得.①若,则,即,不合乎题意;②若,则,则,此时,,由于函数在区间上单调递增,函数在区间上单调递增,则,;③若,则,则,此时,由于函数在区间上单调递减,函数在区间上单调递增,则,.综上所述,.故选:D.本题考查函数单调性的应用,构造新函数是解本题的关键,解题时要注意对的取值范围进行分类讨论,考查推理能力,属于中等题.5.B【解析】

由,可得,解出即可判断出结论.【详解】解:因为,且.,解得.是的必要不充分条件.故选:.本题考查了向量数量积运算性质、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.6.A【解析】

首先利用二倍角正切公式由,求出,再根据充分条件、必要条件的定义判断即可;【详解】解:∵,∴可解得或,∴“”是“”的充分不必要条件.故选:A本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题的关键,属于基础题.7.D【解析】

根据抛物线的性质,设出直线方程,代入抛物线方程,求得k的值,设出双曲线方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用双曲线的离心率公式求得e.【详解】直线F2A的直线方程为:y=kx,F1(0,),F2(0,),代入抛物线C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),设双曲线方程为:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴离心率e1,故选:D.本题考查抛物线及双曲线的方程及简单性质,考查转化思想,考查计算能力,属于中档题.8.D【解析】

利用等差数列的通项公式,可求解得到,利用求和公式和等差中项的性质,即得解【详解】,解得..故选:D本题考查了等差数列的通项公式、求和公式和等差中项,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.9.A【解析】

由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【详解】当时,,∵在上有且仅有5个零点,∴,∴.故选:A.本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.10.B【解析】

根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【详解】为上的奇函数,,而函数是上的偶函数,,,故为周期函数,且周期为故选:B本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.11.B【解析】

执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.【详解】由题意,执行给定的程序框图,输入,可得:第1次循环:;第2次循环:;第3次循环:;第10次循环:,此时满足判定条件,输出结果,故选:B.本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.12.D【解析】

,,得解.【详解】,,,所以,故选D比较不同数的大小,找中间量作比较是一种常见的方法.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

根据双曲线的标准方程写出双曲线的渐近线方程,结合题意可求得正实数的值.【详解】双曲线的渐近线方程为,由于该双曲线的一条渐近线方程为,,解得.故答案为:.本题考查利用双曲线的渐近线方程求参数,考查计算能力,属于基础题.14.【解析】

由已知可知直线过抛物线的焦点,求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离.【详解】解:如图,直线过定点,,而抛物线的焦点为,,弦的中点到准线的距离为,则弦的中点到直线的距离等于.故答案为:.本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,体现了数学转化思想方法,属于中档题.15.4【解析】

根据流程图依次运行直到,结束循环,输出n,得出结果.【详解】由题:,,,结束循环,输出.故答案为:4此题考查根据程序框图运行结果求输出值,关键在于准确识别循环结构和判断框语句.16.【解析】

建立直角坐标系,依题意可求得,而,,,故可得,且,由此构造函数,,利用二次函数的性质即可求得取值范围.【详解】建立如图所示的平面直角坐标系,则,,,设,,,,根据,即,,,则,,即,,,则,,所以,,,,,,且,故,设,,易知二次函数的对称轴为,故函数在,上的最大值为,最小值为,故的取值范围为.故答案为:.本题考查平面向量数量积的坐标运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意通过设元、消元,将问题转化为元二次函数的值域问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)或;(2).【解析】

(1)利用绝对值的几何意义,将不等式,转化为不等式或或求解.(2)根据-2在R上恒成立,由绝对值三角不等式求得的最小值即可.【详解】(1)原不等式等价于或或,解得:或,∴不等式的解集为或.(2)因为-2在R上恒成立,而,所以,解得,所以实数的取值范围是.本题主要考查绝对值不等式的解法和不等式恒成立问题,还考查了运算求解的能力,属于中档题.18.(1);(2)或.【解析】

(1)求出,由,建立方程求解,即可求出结论;(2)根据函数的单调区间,极值,做出函数在的图象,即可求解.【详解】(1),由题意知,解得(舍去)或.(2)当时,故方程有根,根为或,+0-0+极大值极小值由表可见,当时,有极小值0.由上表可知的减函数区间为,递增区间为,.因为,.由数形结合可得或.本题考查导数的几何意义,应用函数的图象是解题的关键,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.19.(1);(2)见解析.【解析】

(1)在中,计算出的值,可得出的值,进而可得出的值,由此可得出椭圆的标准方程;(2)设点、,设直线的方程为,将该直线方程与椭圆方程联立,列出韦达定理,根据已知条件得出,利用韦达定理和斜率公式化简得出与所满足的关系式,代入直线的方程,即可得出直线所过定点的坐标.【详解】(1)在中,,,,,,,,因此,椭圆的标准方程为;(2)由题不妨设,设点,联立,消去化简得,且,,,,,∴代入,化简得,化简得,,,,直线,因此,直线过定点.本题考查椭圆方程的求解,同时也考查了椭圆中直线过定点的问题,考查计算能力,属于中等题.20.(1)a=1;(2)见解析【解析】

(1)由题意可得|x﹣a|≥4x,分类讨论去掉绝对值,分别求得x的范围即可求出a的值.(2)由条件利用绝对值三角不等式,基本不等式证得f(x)≥2..【详解】(1)由f(x)﹣|x|≥4x,可得|x﹣a|≥4x,(a>0),当x≥a时,x﹣a≥4x,解得x,这与x≥a>0矛盾,故不成立,当x<a时,a﹣x≥4x,解得x,又不等式的解集是{x|x≤1},故1,解得a=1.(2)证明:f(x)=|x﹣a|+|x||x﹣a﹣(x)|=|a|,∵a>0,∴|a|=a22,当且仅当a时取等号,故f(x).本题主要考查绝对值三角不等式,基本不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.21.(1)见解析(2)见证明【解析】

(1)对函数求导,分别讨论,以及,即可得出结果;(2)根据题意,由导数几何意义得到,将证明转化为证明即可,再令,设,用导数方法判断出的单调性,进而可得出结论成立.【详解】(1)解:易得,函数的定义域为,,令,得或.①当时,时,,函数单调递减;时,,函数单调递增.此时,的减区间为,增区间为.②当时,时,,函数单调递减;或时,,函数单调递增.此时,的减区间为,增区间为,.③当时,时,,函数单调递增;此时,的减区间为.综上,当时,的减区间为,增区间为:当时,的减区间为,增区间为.;当时,增区间为.(2)证明:由题意及导数的几何意义,得由(1)中得.易知,导函数在上为增函数,所以,要证,只要证,即,即证.因为,不妨令,则.所以,所以在上为增函数,所以,即,所以,即,即.故有(得证).本题主要考查导数的应用,通常需要对函数求导,利用导数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论