版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设全集为R,集合,,则A. B. C. D.2.已知与分别为函数与函数的图象上一点,则线段的最小值为()A. B. C. D.63.已知某几何体的三视图如右图所示,则该几何体的体积为()A.3 B. C. D.4.已知为坐标原点,角的终边经过点且,则()A. B. C. D.5.在中,“”是“为钝角三角形”的()A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件6.已知,,则等于().A. B. C. D.7.已知函数,若有2个零点,则实数的取值范围为()A. B. C. D.8.已知数列中,,(),则等于()A. B. C. D.29.若均为任意实数,且,则的最小值为()A. B. C. D.10.单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA1→A1D1→‥,黑蚂蚁爬行的路线是AB→BB1→‥,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN*).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是()A.1 B. C. D.011.若的展开式中的系数为150,则()A.20 B.15 C.10 D.2512.已知复数,则()A. B. C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.若展开式中的常数项为240,则实数的值为________.14.已知,圆,直线PM,PN分别与圆O相切,切点为M,N,若,则的最小值为________.15.请列举用0,1,2,3这4个数字所组成的无重复数字且比210大的所有三位奇数:___________.16.已知是定义在上的偶函数,其导函数为.若时,,则不等式的解集是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在等比数列中,.(1)求数列的通项公式;(2)若,求数列前项的和.18.(12分)已知二阶矩阵A=abcd,矩阵A属于特征值λ1=-1的一个特征向量为α119.(12分)如图,椭圆的左、右顶点分别为,,上、下顶点分别为,,且,为等边三角形,过点的直线与椭圆在轴右侧的部分交于、两点.(1)求椭圆的标准方程;(2)求四边形面积的取值范围.20.(12分)已知函数.(1)当时,求的单调区间.(2)设直线是曲线的切线,若的斜率存在最小值-2,求的值,并求取得最小斜率时切线的方程.(3)已知分别在,处取得极值,求证:.21.(12分)如图,四棱锥中,平面平面,底面为梯形.,且与均为正三角形.为的中点为重心,与相交于点.(1)求证:平面;(2)求三棱锥的体积.22.(10分)某商场举行有奖促销活动,顾客购买每满元的商品即可抽奖一次.抽奖规则如下:抽奖者掷各面标有点数的正方体骰子次,若掷得点数大于,则可继续在抽奖箱中抽奖;否则获得三等奖,结束抽奖,已知抽奖箱中装有个红球与个白球,抽奖者从箱中任意摸出个球,若个球均为红球,则获得一等奖,若个球为个红球和个白球,则获得二等奖,否则,获得三等奖(抽奖箱中的所有小球,除颜色外均相同).若,求顾客参加一次抽奖活动获得三等奖的概率;若一等奖可获奖金元,二等奖可获奖金元,三等奖可获奖金元,记顾客一次抽奖所获得的奖金为,若商场希望的数学期望不超过元,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.2.C【解析】
利用导数法和两直线平行性质,将线段的最小值转化成切点到直线距离.【详解】已知与分别为函数与函数的图象上一点,可知抛物线存在某条切线与直线平行,则,设抛物线的切点为,则由可得,,所以切点为,则切点到直线的距离为线段的最小值,则.故选:C.【点睛】本题考查导数的几何意义的应用,以及点到直线的距离公式的应用,考查转化思想和计算能力.3.B【解析】由三视图知:几何体是直三棱柱消去一个三棱锥,如图:
直三棱柱的体积为,消去的三棱锥的体积为,
∴几何体的体积,故选B.点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积.4.C【解析】
根据三角函数的定义,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出结果.【详解】根据题意,,解得,所以,所以,所以.故选:C.【点睛】本题考查三角函数定义的应用和二倍角的正弦公式,考查计算能力.5.C【解析】分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在中,因为,所以,因为,所以,,结合三角形内角的条件,故A,B同为锐角,因为,所以,即,所以,因此,所以是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若是钝角三角形,也推不出“,故必要性不成立,所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.6.B【解析】
由已知条件利用诱导公式得,再利用三角函数的平方关系和象限角的符号,即可得到答案.【详解】由题意得,又,所以,结合解得,所以,故选B.【点睛】本题考查三角函数的诱导公式、同角三角函数的平方关系以及三角函数的符号与位置关系,属于基础题.7.C【解析】
令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案.【详解】令,可得,要使得有两个实数解,即和有两个交点,,令,可得,当时,,函数在上单调递增;当时,,函数在上单调递减.当时,,若直线和有两个交点,则.实数的取值范围是.故选:C.【点睛】本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.8.A【解析】
分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.【详解】解:∵,(),
,
,
,
,
…,
∴数列是以3为周期的周期数列,
,
,
故选:A.【点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.9.D【解析】
该题可以看做是圆上的动点到曲线上的动点的距离的平方的最小值问题,可以转化为圆心到曲线上的动点的距离减去半径的平方的最值问题,结合图形,可以断定那个点应该满足与圆心的连线与曲线在该点的切线垂直的问题来解决,从而求得切点坐标,即满足条件的点,代入求得结果.【详解】由题意可得,其结果应为曲线上的点与以为圆心,以为半径的圆上的点的距离的平方的最小值,可以求曲线上的点与圆心的距离的最小值,在曲线上取一点,曲线有在点M处的切线的斜率为,从而有,即,整理得,解得,所以点满足条件,其到圆心的距离为,故其结果为,故选D.【点睛】本题考查函数在一点处切线斜率的应用,考查圆的程,两条直线垂直的斜率关系,属中档题.10.B【解析】
根据规则,观察黑蚂蚁与白蚂蚁经过几段后又回到起点,得到每爬1步回到起点,周期为1.计算黑蚂蚁爬完2020段后实质是到达哪个点以及计算白蚂蚁爬完2020段后实质是到达哪个点,即可计算出它们的距离.【详解】由题意,白蚂蚁爬行路线为AA1→A1D1→D1C1→C1C→CB→BA,即过1段后又回到起点,可以看作以1为周期,由,白蚂蚁爬完2020段后到回到C点;同理,黑蚂蚁爬行路线为AB→BB1→B1C1→C1D1→D1D→DA,黑蚂蚁爬完2020段后回到D1点,所以它们此时的距离为.故选B.【点睛】本题考查多面体和旋转体表面上的最短距离问题,考查空间想象与推理能力,属于中等题.11.C【解析】
通过二项式展开式的通项分析得到,即得解.【详解】由已知得,故当时,,于是有,则.故选:C【点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.12.C【解析】
根据复数模的性质即可求解.【详解】,,故选:C【点睛】本题主要考查了复数模的性质,属于容易题.二、填空题:本题共4小题,每小题5分,共20分。13.-3【解析】
依题意可得二项式展开式的常数项为即可得到方程,解得即可;【详解】解:∵二项式的展开式中的常数项为,∴解得.故答案为:【点睛】本题考查二项式展开式中常数项的计算,属于基础题.14.【解析】
由可知R为中点,设,由过切点的切线方程即可求得,,代入,,则在直线上,即可得方程为,将,代入化简可得,则直线过定点,由则点在以为直径的圆上,则.即可求得.【详解】如图,由可知R为MN的中点,所以,,设,则切线PM的方程为,即,同理可得,因为PM,PN都过,所以,,所以在直线上,从而直线MN方程为,因为,所以,即直线MN方程为,所以直线MN过定点,所以R在以OQ为直径的圆上,所以.故答案为:.【点睛】本题考查直线和圆的位置关系,考查圆的切线方程,定点和圆上动点距离的最值问题,考查学生的数形结合能力和计算能力,难度较难.15.231,321,301,1【解析】
分个位数字是1、3两种情况讨论,即得解【详解】0,1,2,3这4个数字所组成的无重复数字比210大的所有三位奇数有:(1)当个位数字是1时,数字可以是231,321,301;(2)当个位数字是3时数字可以是1.故答案为:231,321,301,1【点睛】本题考查了分类计数法的应用,考查了学生分类讨论,数学运算的能力,属于基础题.16.【解析】
构造,先利用定义判断的奇偶性,再利用导数判断其单调性,转化为,结合奇偶性,单调性求解不等式即可.【详解】令,则是上的偶函数,,则在上递减,于是在上递增.由得,即,于是,则,解得.故答案为:【点睛】本题考查了利用函数的奇偶性、单调性解不等式,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】
(1)由基本量法,求出公比后可得通项公式;(2)求出,用裂项相消法求和.【详解】解:(1)设等比数列的公比为又因为,所以解得(舍)或所以,即(2)据(1)求解知,,所以所以【点睛】本题考查求等比数列的通项公式,考查裂项相消法求和.解题方法是基本量法.基本量法是解决等差数列和等比数列的基本方法,务必掌握.18.A=【解析】
运用矩阵定义列出方程组求解矩阵A【详解】由特征值、特征向量定义可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单19.(1);(2).【解析】
(1)根据坐标和为等边三角形可得,进而得到椭圆方程;(2)①当直线斜率不存在时,易求坐标,从而得到所求面积;②当直线的斜率存在时,设方程为,与椭圆方程联立得到韦达定理的形式,并确定的取值范围;利用,代入韦达定理的结论可求得关于的表达式,采用换元法将问题转化为,的值域的求解问题,结合函数单调性可求得值域;结合两种情况的结论可得最终结果.【详解】(1),,为等边三角形,,椭圆的标准方程为.(2)设四边形的面积为.①当直线的斜率不存在时,可得,,.②当直线的斜率存在时,设直线的方程为,设,,联立得:,,,.,,,,面积.令,则,,令,则,,在定义域内单调递减,.综上所述:四边形面积的取值范围是.【点睛】本题考查直线与椭圆的综合应用问题,涉及到椭圆方程的求解、椭圆中的四边形面积的取值范围的求解问题;关键是能够将所求面积表示为关于某一变量的函数,将问题转化为函数值域的求解问题.20.(1)单调递增区间为,;单调递减区间为;(2),;(3)证明见解析.【解析】
(1)由的正负可确定的单调区间;(2)利用基本不等式可求得时,取得最小值,由导数的几何意义可知,从而求得,求得切点坐标后,可得到切线方程;(3)由极值点的定义可知是的两个不等正根,由判别式大于零得到的取值范围,同时得到韦达定理的形式;化简为,结合的范围可证得结论.【详解】(1)由题意得:的定义域为,当时,,,当和时,;当时,,的单调递增区间为,;单调递减区间为.(2),所以(当且仅当,即时取等号),切线的斜率存在最小值,,解得:,,即切点为,从而切线方程,即:.(3),分别在,处取得极值,,是方程,即的两个不等正根.则,解得:,且,.,,,即不等式成立.【点睛】本题考查导数在研究函数中的应用,涉及到利用导数求解函数的单调区间、导数几何意义的应用、利用导数证明不等式等知识;本题中证明不等式的关键是能够通过极值点的定义将问题转变为一元二次方程根的分布问题.21.(1)见解析(2)【解析】
(1)第(1)问,连交于,连接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓库运营管理方案
- 外来施工人员保密协议
- 2023年绍兴市上虞区医疗卫生单位招聘考试真题
- 2023年嘉兴教师招聘平湖市教育局招聘学年教师考试真题
- 2023年海南卫生健康职业学院招聘 事业编制人员笔试真题
- 病案(病历)封存、启封制度
- 班班通培训方案
- 80大寿流程、主持词及发言稿
- 会计师事务所-人力资源-人才培养制度
- 语文小练笔课题方案
- 艺术学概论 第二章 艺术的起源
- 物资放行管理办法放行审批权限规定放行条填写规范
- 第五版-FMEA-新版FMEA【第五版】
- 2023年宏观经济期末题
- 新能源无人机技术研究报告
- 欧姆龙PLC入门课程
- 如何提高学生的阅读能力的研究方案
- 异位妊娠PPT课件ok
- 医院招聘笔试题目及答案
- xx市足球协会章程
- 小学健康教育校本教材
评论
0/150
提交评论