版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一轮复习精品资料(高中)PAGEPAGE1第十二章统计与统计案例第二讲变量间的相关关系与统计案例x12345y5tm1012练好题·考点自测1.〖2021福建模拟〗下列四个命题说法正确的是()①在回归分析中,R2可以用来刻画回归效果,R2的值越大,模型的拟合效果越好;②在独立性检验中,随机变量K2的值越大,说明两个分类变量有关系的可能性越大;③在回归方程y^=0.2x+12中,当解释变量x每增加1个单位时,预报变量y④两个随机变量相关性越弱,则相关系数的绝对值越接近于1.A.①④ B.②④ C.①② D.②③2.〖2020全国卷Ⅰ,5,5分〗〖文〗某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(xi,yi)(i=1,2,…,20)得到如图12-2-1所示的散点图:图12-2-1由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bx B.y=a+bx2C.y=a+bex D.y=a+blnx3.〖2017山东,5,5分〗为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为y^=b^x+a^,已知∑i=110xi=225,∑i=110yA.160 B.163 C.166 D.1704.〖2021四省八校联考〗具有线性相关关系的两个变量x,y的取值如表,其回归直线y^=b^x+a^A.t+m=13 B.t=m=6C.t=m=7 D.t=6,m=75.〖2021湖南模拟〗通过随机询问100名大学生是否爱好踢毽子,得到如下列联表:男女总计爱好104050不爱好203050总计3070100P(K2≥k0)0.100.050.0250.010k02.7063.8415.0246.635附:K2=n(ad-bc)2(a+b下列结论正确的是()A.在犯错误的概率不超过5%的前提下,认为“爱好踢毽子与性别有关”B.在犯错误的概率不超过5%的前提下,认为“爱好踢毽子与性别无关”C.有97.5%以上的把握认为“爱好踢毽子与性别有关”D.有97.5%以上的把握认为“爱好踢毽子与性别无关”拓展变式1.某芯片公司为制订下一年的研发投入计划,需了解年研发资金投入量xi(单位:亿元)对年销售额yi(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①y=α+βx2,②y=eλx+t,其中α,β,λ,t均为常数,e为自然对数的底数.现该公司收集了近12年的年研发资金投入量xi和年销售额yi的数据,i=1,2,…,12,并对这些数据作了初步处理,得到了如图12-2-3所示的散点图及一些统计量的值.图12-2-3令ui=x2,vi=lnyi(i=1,2,…,12),经计算得如下数据:xy∑i=112(xi-∑i=112(yi-uv20667702004604.20∑i=112(ui-∑i=112(ui(yi-y∑i=112(vi-∑i=112(xi(vi-v3125000215000.30814(1)设{ui}和{yi}的相关系数为r1,{xi}和{vi}的相关系数为r2,请从相关系数的角度,选择一个拟合程度更好的模型.(2)①根据(1)的选择及表中数据,建立y关于x的回归方程(系数精确到0.01);②若下一年销售额y需达到90亿元,预测下一年的研发资金投入量x是多少亿元?附:相关系数r=∑i回归直线y^=a^+b参考数据:308=4×77,90≈9.4868,e4.4998≈90.2.〖2020全国卷Ⅲ,18,12分〗〖文〗某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级〖0,200〗(200,400〗(400,600〗1(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:K2=n(P(K2≥k)0.0500.0100.001k3.8416.63510.8283.在红外线照射下,组织温度升高,毛细血管扩张,血流加快,物质代谢增强,组织细胞活力及再生能力提高,因此红外线治疗仪对某些疾病的治疗有着很好的作用.某药店兼营某红外线治疗仪,经过近5个月的营销,对销售状况进行相关数据分析,发现月销售量与销售价格有关,统计数据如下表:每台红外线治疗仪的销售价格x/元140150160170180红外线治疗仪的月销售量y/台6455453526(1)根据表中数据求y关于x的线性回归方程.(2)(i)每台红外线治疗仪的价格为165元时,预测红外线治疗仪的月销售量;(四舍五入为整数)(ii)若该红外线治疗仪的成本为120元/台,要使每月获得最大的纯收益,利用(1)中结论,问每台红外线治疗仪的销售价格应定为多少?(四舍五入,精确到1元)参考公式:回归直线方程y^=b^x+a^4.〖2020广州二模〗全民健身旨在全面提高国民体质和健康水平,倡导全民做到每天参加一次以上健身活动,学会两种以上健身方法,每年进行一次体质测定(简称体测).为响应全民健身号召,某单位在职工体测后就某项健康指数(百分制)随机抽取了30名职工的体测数据作为样本,具体图12-2-7数据的茎叶图如图12-2-7所示,其中有1名女职工的健康指数的数据模糊不清(用x表示),已知这30名职工的健康指数的平均数为76.2.(1)根据茎叶图,求样本中男职工健康指数的众数和中位数;(2)根据茎叶图,按男、女用分层抽样的方法从这30名职工中随机抽取5人,再从抽取的5人中随机抽取2人,求抽取的2人都是男职工的概率;(3)经计算,样本中男职工健康指数的平均数为81,女职工现有数据(即剔除x)健康指数的平均数为69,方差为190,求样本中所有女职工的健康指数的平均数和方差(结果精确到0.1).答案第十二章统计与统计案例第二讲变量间的相关关系与统计案例1.C由R2与K2的公式及性质可知,①②正确;在回归方程y^=0.2x+12中,当解释变量x每增加1个单位时,预报变量y^平均增加0.2.D根据题中散点图可知,散点图中点的分布形状与对数函数的图象类似,故选D.3.C由题意可知y^=4x+a^,又x=22.5,y=160,因此160=22.5×4+a^,故a^=70,因此y^=4x+70.当x=24时,4.D由表格数据,得x=1+2+3+4+55=3,y=5+t+m+10+125=27+t+m5.因为回归直线y^=b^x+a^必经过样本点的中心(x,y)(求回归直线方程的关键是抓住样本点的中心在回归直线上),且回归直线经过点(3,8),所以点(3,8)为回归直线5.A由题意得K2的观测值k=100×(10×30-40×20)230×70×50×50≈4.762>3.841,可得在犯错误的概率不超过51.(1)由题意,r1=∑i=112(ui-u-)(则|r1|<|r2|,因此从相关系数的角度,模型y=eλx+t的拟合程度更好.(2)①先建立v关于x的线性回归方程,由y=eλx+t,得lny=t+λx(两边同时取以e为底的对数),即v=t+λx(将非线性回归方程转化为线性回归方程);由于λ=∑i=112t=v--λx-=4.20-0.所以v关于x的线性回归方程为v^=0.02x+3.84(系数精确到0.01,即0.018精确为0.所以lny^=0.02x+3.84,则y^=e0.02x+3.②下一年销售额y需达到90亿元,即y=90,代入y^=e0.02x+3.84,得90=e0.02x+3.84又e4.4998≈90,所以4.4998≈0.02x+3.84,所以x≈4.4998-3.840.02=32.所以下一年的研发资金投入量约是32.99亿元.〖方法技巧〗常见非线性回归方程的转换方式非线性回归方程变换公式变换后的线性回归方程y=axb(a>0,b≠0)c=lnav=lnxu=lnyu=c+bvy=aebx(a>0)c=lnau=lnyu=c+bxy=aebx(c=lnav=1u=lnyu=c+bvy=a+blnxv=lnxy=a+bv2.(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如表:空气质量等级1234概率的估计值0.430.270.210.09(2)一天中到该公园锻炼的平均人次的估计值为1100(100×20+300×35+500×45)=350(3)根据所给数据,可得2×2列联表如下:人次≤400人次>400空气质量好3337空气质量不好228根据列联表得K2的观测值k=100×(33×8-22×37)255×45×70×30≈5由于5.820>3.841,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.3.(1)x=y=∑i=15(xi-x)2=(140-160)2+(150-160)2+(160-160)2+(170-160)2+(180-160)2=1000,∑i=15(xi∴^b=∑i=15∴a^=y-^bx=45+0∴y关于x的回归方程为y^=-0.96x+198.6(2)(i)由(1)知,当x=165时,y^=-0.96×165+198.6=40.2≈40,即每台红外线治疗仪的价格为165元时,红外线治疗仪的月销售量为40台(ii)药店每月获得的纯收益Q(x)=(-0.96x+198.6)(x-120)=-0.96x2+313.8x-23832,∴当x=313.82×0.96≈163时,Q(x即要使每月获得最大的纯收益,每台红外线治疗仪的销售价格应定为163元.4.(1)由茎叶图可知,样本中男职工健康指数的众数为76,中位数为80+822=81(2)由于是分层抽样,因此抽取的5人中男职工有5×1830=3(人),分别记为A,B,C;女职工有2人,分别记为a,b.从5人中随机抽取2人的情况有:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b),共10种.其中这2人都是男职工的情况有:(A,B),(A,C),(B,C),共3种.设“抽取的2人都是男职工”为事件D,所以所求概率P(D)=3(3)因为样本中男职工健康指数的平均数为81,样本中女职工现有数据(即剔除x)健康指数的平均数为69,所以样本中所有女职工健康指数的平均数为76.2×30-81×1812=69则被剔除的女职工的健康指数为69×12-69×11=69,即x=9.因为样本中女职工现有数据(即剔除x)健康指数的方差为190,所以样本中所有女职工健康指数的方差为190×11+012=209012第十二章统计与统计案例第二讲变量间的相关关系与统计案例x12345y5tm1012练好题·考点自测1.〖2021福建模拟〗下列四个命题说法正确的是()①在回归分析中,R2可以用来刻画回归效果,R2的值越大,模型的拟合效果越好;②在独立性检验中,随机变量K2的值越大,说明两个分类变量有关系的可能性越大;③在回归方程y^=0.2x+12中,当解释变量x每增加1个单位时,预报变量y④两个随机变量相关性越弱,则相关系数的绝对值越接近于1.A.①④ B.②④ C.①② D.②③2.〖2020全国卷Ⅰ,5,5分〗〖文〗某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(xi,yi)(i=1,2,…,20)得到如图12-2-1所示的散点图:图12-2-1由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bx B.y=a+bx2C.y=a+bex D.y=a+blnx3.〖2017山东,5,5分〗为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为y^=b^x+a^,已知∑i=110xi=225,∑i=110yA.160 B.163 C.166 D.1704.〖2021四省八校联考〗具有线性相关关系的两个变量x,y的取值如表,其回归直线y^=b^x+a^A.t+m=13 B.t=m=6C.t=m=7 D.t=6,m=75.〖2021湖南模拟〗通过随机询问100名大学生是否爱好踢毽子,得到如下列联表:男女总计爱好104050不爱好203050总计3070100P(K2≥k0)0.100.050.0250.010k02.7063.8415.0246.635附:K2=n(ad-bc)2(a+b下列结论正确的是()A.在犯错误的概率不超过5%的前提下,认为“爱好踢毽子与性别有关”B.在犯错误的概率不超过5%的前提下,认为“爱好踢毽子与性别无关”C.有97.5%以上的把握认为“爱好踢毽子与性别有关”D.有97.5%以上的把握认为“爱好踢毽子与性别无关”拓展变式1.某芯片公司为制订下一年的研发投入计划,需了解年研发资金投入量xi(单位:亿元)对年销售额yi(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①y=α+βx2,②y=eλx+t,其中α,β,λ,t均为常数,e为自然对数的底数.现该公司收集了近12年的年研发资金投入量xi和年销售额yi的数据,i=1,2,…,12,并对这些数据作了初步处理,得到了如图12-2-3所示的散点图及一些统计量的值.图12-2-3令ui=x2,vi=lnyi(i=1,2,…,12),经计算得如下数据:xy∑i=112(xi-∑i=112(yi-uv20667702004604.20∑i=112(ui-∑i=112(ui(yi-y∑i=112(vi-∑i=112(xi(vi-v3125000215000.30814(1)设{ui}和{yi}的相关系数为r1,{xi}和{vi}的相关系数为r2,请从相关系数的角度,选择一个拟合程度更好的模型.(2)①根据(1)的选择及表中数据,建立y关于x的回归方程(系数精确到0.01);②若下一年销售额y需达到90亿元,预测下一年的研发资金投入量x是多少亿元?附:相关系数r=∑i回归直线y^=a^+b参考数据:308=4×77,90≈9.4868,e4.4998≈90.2.〖2020全国卷Ⅲ,18,12分〗〖文〗某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级〖0,200〗(200,400〗(400,600〗1(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:K2=n(P(K2≥k)0.0500.0100.001k3.8416.63510.8283.在红外线照射下,组织温度升高,毛细血管扩张,血流加快,物质代谢增强,组织细胞活力及再生能力提高,因此红外线治疗仪对某些疾病的治疗有着很好的作用.某药店兼营某红外线治疗仪,经过近5个月的营销,对销售状况进行相关数据分析,发现月销售量与销售价格有关,统计数据如下表:每台红外线治疗仪的销售价格x/元140150160170180红外线治疗仪的月销售量y/台6455453526(1)根据表中数据求y关于x的线性回归方程.(2)(i)每台红外线治疗仪的价格为165元时,预测红外线治疗仪的月销售量;(四舍五入为整数)(ii)若该红外线治疗仪的成本为120元/台,要使每月获得最大的纯收益,利用(1)中结论,问每台红外线治疗仪的销售价格应定为多少?(四舍五入,精确到1元)参考公式:回归直线方程y^=b^x+a^4.〖2020广州二模〗全民健身旨在全面提高国民体质和健康水平,倡导全民做到每天参加一次以上健身活动,学会两种以上健身方法,每年进行一次体质测定(简称体测).为响应全民健身号召,某单位在职工体测后就某项健康指数(百分制)随机抽取了30名职工的体测数据作为样本,具体图12-2-7数据的茎叶图如图12-2-7所示,其中有1名女职工的健康指数的数据模糊不清(用x表示),已知这30名职工的健康指数的平均数为76.2.(1)根据茎叶图,求样本中男职工健康指数的众数和中位数;(2)根据茎叶图,按男、女用分层抽样的方法从这30名职工中随机抽取5人,再从抽取的5人中随机抽取2人,求抽取的2人都是男职工的概率;(3)经计算,样本中男职工健康指数的平均数为81,女职工现有数据(即剔除x)健康指数的平均数为69,方差为190,求样本中所有女职工的健康指数的平均数和方差(结果精确到0.1).答案第十二章统计与统计案例第二讲变量间的相关关系与统计案例1.C由R2与K2的公式及性质可知,①②正确;在回归方程y^=0.2x+12中,当解释变量x每增加1个单位时,预报变量y^平均增加0.2.D根据题中散点图可知,散点图中点的分布形状与对数函数的图象类似,故选D.3.C由题意可知y^=4x+a^,又x=22.5,y=160,因此160=22.5×4+a^,故a^=70,因此y^=4x+70.当x=24时,4.D由表格数据,得x=1+2+3+4+55=3,y=5+t+m+10+125=27+t+m5.因为回归直线y^=b^x+a^必经过样本点的中心(x,y)(求回归直线方程的关键是抓住样本点的中心在回归直线上),且回归直线经过点(3,8),所以点(3,8)为回归直线5.A由题意得K2的观测值k=100×(10×30-40×20)230×70×50×50≈4.762>3.841,可得在犯错误的概率不超过51.(1)由题意,r1=∑i=112(ui-u-)(则|r1|<|r2|,因此从相关系数的角度,模型y=eλx+t的拟合程度更好.(2)①先建立v关于x的线性回归方程,由y=eλx+t,得lny=t+λx(两边同时取以e为底的对数),即v=t+λx(将非线性回归方程转化为线性回归方程);由于λ=∑i=112t=v--λx-=4.20-0.所以v关于x的线性回归方程为v^=0.02x+3.84(系数精确到0.01,即0.018精确为0.所以lny^=0.02x+3.84,则y^=e0.02x+3.②下一年销售额y需达到90亿元,即y=90,代入y^=e0.02x+3.84,得90=e0.02x+3.84又e4.4998≈90,所以4.4998≈0.02x+3.84,所以x≈4.4998-3.840.02=32.所以下一年的研发资金投入量约是32.99亿元.〖方法技巧〗常见非线性回归方程的转换方式非线性回归方程变换公式变换后的线性回归方程y=axb(a>0,b≠0)c=lnav=lnxu=lnyu=c+bvy=aebx(a>0)c=lnau=lnyu=c+bxy=aebx(c=lnav=1u=lnyu=c+bvy=a+blnxv=lnxy=a+bv2.(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如表:空气质量等级1234概率的估计值0.430.270.210.09(2)一天中到该公园锻炼的平均人次的估计值为1100(100×20+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度建筑工程材料采购与施工合同范本
- 04年网络安全维护合同
- 汽水制造机市场发展现状调查及供需格局分析预测报告
- 2024年度幼儿园特色课程开发合同
- 2024年度技术服务合同标的为云计算服务
- 2024年度保障性住房租赁合同优惠政策
- 编码和解码装置市场发展现状调查及供需格局分析预测报告
- 2024年度企业形象设计及推广合同
- 2024年度供应链管理系统开发及运维合同
- 04版智能托盘研发与租赁合同
- 漏电保护器测试检查记录表
- 首末件检查记录表
- 《二外西班牙语3》课程教学大纲
- 新北师大版九年级上册英语(全册知识点语法考点梳理、重点题型分类巩固练习)(家教、补习、复习用)
- 大数据及信息安全最新技术
- 2015路面工程讲义(垫层+底基层+基层+面层+联合层+封层、透层与黏层)
- 信息安全保密控制措施资料
- 一般过去时PPT课件(PPT 21页)
- 《子宫脱垂病人的护理查房》PPT课件
- 行政伦理学-试题及答案
- 卫生院医疗质量管理与考核细则
评论
0/150
提交评论