版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十二篇推理证明、算法、复数第1讲合情推理与演绎推理A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.下面几种推理过程是演绎推理的是 ().A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推各班人数都超过50人B.由三角形的性质,推测空间四面体的性质C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D.在数列{an}中,a1=1,an=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(an-1+\f(1,an-1))),由此归纳出{an}的通项公式解析A、D是归纳推理,B是类比推理;C运用了“三段论”是演绎推理.答案C2.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=().A.f(x) B.-f(x) C.g(x) D.-g(x)解析由所给函数及其导数知,偶函数的导函数为奇函数,因此当f(x)是偶函数时,其导函数应为奇函数,故g(-x)=-g(x).答案D3.给出下面类比推理命题(其中Q为有理数,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出“a,c∈C,则a-c=0⇒a=c”;②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“a,b,c,d∈Q,则a+beq\r(2)=c+deq\r(2)⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”;④“若x∈R,则|x|<1⇒-1<x<1”类比推出“若z∈C,则|z|<1⇒-1<z<1”.其中类比结论正确的个数有 ().A.1 B.2 C.3 D.4解析类比结论正确的只有①②.答案B4.(·江西)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为 ().A.3125 B.5625 C.0625 D.8125解析∵55=3125,56=15625,57=78125,58=390625,59=1953125,510=9765625,…∴5n(n∈Z,且n≥5)的末四位数字呈周期性变化,且最小正周期为4,记5n(n∈Z,且n≥5)的末四位数字为f(n),则f(2011)=f(501×4+7)=f(7)∴52011与57的末四位数字相同,均为8125.故选D.答案D二、填空题(每小题5分,共10分)5.(彭水一模)以下是对命题“若两个正实数a1,a2满足aeq\o\al(2,1)+aeq\o\al(2,2)=1,则a1+a2≤eq\r(2)”的证明过程:证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤eq\r(2).根据上述证明方法,若n个正实数满足aeq\o\al(2,1)+aeq\o\al(2,2)+…+aeq\o\al(2,n)=1时,你能得到的结论为________________________________(不必证明).解析依题意,构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-an)2,则有f(x)=nx2-2(a1+a2+…+an)x+1,Δ=[-2(a1+a2+…+an)]2-4n=4(a1+a2+…+an)2-4n≤0,即有a1+a2+…+an≤eq\r(n).答案a1+a2+…+an≤eq\r(n)6.用黑白两种颜色的正方形地砖依照下图所示的规律拼成若干个图形,则按此规律,第100个图形中有白色地砖________块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是________.解析按拼图的规律,第1个图有白色地砖3×3-1(块),第2个图有白色地砖3×5-2(块),第3个图有白色地砖3×7-3(块),…,则第100个图中有白色地砖3×201-100=503(块).第100个图中黑白地砖共有603块,则将一粒豆子随机撒在第100个图中,豆子落在白色地砖上的概率是eq\f(503,603).答案503eq\f(503,603)三、解答题(共25分)7.(12分)给出下面的数表序列:eq\a\vs4\al(表1表2表3,113135,448,12)…其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).解表4为1357 4812122032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.8.(13分)(·福建)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解(1)选择②式,计算如下:sin215°+cos215°-sin15°cos15°=1-eq\f(1,2)sin30°=1-eq\f(1,4)=eq\f(3,4).(2)三角恒等式为sin2α+cos2(30°-α)-sinαcos(30°-α)=eq\f(3,4).证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+(cos30°cosα+sin30°sinα)2-sinα·(cos30°cosα+sin30°sinα)=sin2α+eq\f(3,4)cos2α+eq\f(\r(3),2)sinαcosα+eq\f(1,4)sin2α-eq\f(\r(3),2)sinαcosα-eq\f(1,2)sin2α=eq\f(3,4)sin2α+eq\f(3,4)cos2α=eq\f(3,4).B级能力突破(时间:30分钟满分:45分)一、选择题(每小题5分,共10分)1.(·九江质检)观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为 ().A.76 B.80 C.86 D.92解析由|x|+|y|=1的不同整数解的个数为4,|x|+|y|=2的不同整数解的个数为8,|x|+|y|=3的不同整数解的个数为12,归纳推理得|x|+|y|=n的不同整数解的个数为4n,故|x|+|y|=20的不同整数解的个数为80.故选B.答案B2.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是 ().A.289 B.1024C.1225 D.1378解析观察三角形数:1,3,6,10,…,记该数列为{an},则a1=1,a2=a1+2,a3=a2+3,…,an=an-1+n.∴a1+a2+…+an=(a1+a2+…+an-1)+(1+2+3+…+n)⇒an=1+2+3+…+n=eq\f(nn+1,2),观察正方形数:1,4,9,16,…,记该数列为{bn},则bn=n2.把四个选项的数字,分别代入上述两个通项公式,可知使得n都为正整数的只有1225.答案C二、填空题(每小题5分,共10分)3.(·黔江模拟)对一个边长为1的正方形进行如下操作;第一步,将它分割成3×3方格,接着用中心和四个角的5个小正方形,构成如图1所示的几何图形,其面积S1=eq\f(5,9);第二步,将图1的5个小正方形中的每个小正方形都进行与第一步相同的操作,得到图2;依此类推,到第n步,所得图形的面积Sn=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,9)))n.若将以上操作类比推广到棱长为1的正方体中,则到第n步,所得几何体的体积Vn=________.解析对一个棱长为1的正方体进行如下操作:第一步,将它分割成3×3×3个小正方体,接着用中心和8个角的9个小正方体,构成新1几何体,其体积V1=eq\f(9,27)=eq\f(1,3);第二步,将新1几何体的9个小正方体中的每个小正方体都进行与第一步相同的操作,得到新2几何体,其体积V2=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))2;…,依此类推,到第n步,所得新n几何体的体积Vn=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))n.答案eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))n4.(·湖南)设N=2n(n∈N*,n≥2),将N个数x1,x2,…,xN依次放入编号为1,2,…,N的N个位置,得到排列P0=x1x2…xN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前eq\f(N,2)和后eq\f(N,2)个位置,得到排列P1=x1x3…xN-1x2x4…xN,将此操作称为C变换.将P1分成两段,每段eq\f(N,2)个数,并对每段作C变换,得到P2;当2≤i≤n-2时,将Pi分成2i段,每段eq\f(N,2i)个数,并对每段作C变换,得到Pi+1.例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.(1)当N=16时,x7位于P2中的第________个位置;(2)当N=2n(n≥8)时,x173位于P4中的第________个位置.解析(1)当N=16时,P1=x1x3x5x7x9…x16,此时x7在第一段内,再把这段变换x7位于偶数位的第2个位置,故在P2中,x7位于后半段的第2个位置,即在P2中x7位于第6个位置.(2)在P1中,x173位于两段中第一段的第87个位置,位于奇数位置上,此时在P2中x173位于四段中第一段的第44个位置上,再作变换得P3时,x173位于八段中第二段的第22个位置上,再作变换时,x173位于十六段中的第四段的第11个位置上,也就是位于P4中的第(3×2n-4+11)个位置上.答案63×2n-4+11三、解答题(共25分)5.(12分)观察下表:1,2,34,5,6,7,8,9,10,11,12,13,14,15,…问:(1)此表第n行的最后一个数是多少?(2)此表第n行的各个数之和是多少?(3)2013是第几行的第几个数?解(1)∵第n+1行的第1个数是2n,∴第n行的最后一个数是2n-1.(2)2n-1+(2n-1+1)+(2n-1+2)+…+(2n-1)=eq\f(2n-1+2n-1·2n-1,2)=3·22n-3-2n-2.(3)∵210=1024,211=2048,1024<2013<2048,∴2013在第11行,该行第1个数是210=1024,由2013-1024+1=990,知2013是第11行的第990个数.6.(13分)(·南昌二模)将各项均为正数的数列{an}中的所有项按每一行比上一行多一项的规则排成数表,如图所示.记表中各行的第一个数a1,a2,a4,a7,…,构成数列{bn},各行的最后一个数a1,a3,a6,a10,…,构成数列{cn},第n行所有数的和为Sn(n=1,2,3,4,…).已知数列{bn}是公差为d的等差数列,从第二行起,每一行中的数按照从左到右的顺序每一个数与它前面一个数的比是常数q,且a1=a13=1,a31=eq\f(5,3).(1)求数列{cn},{Sn}的通项公式;(2)求数列{cn}的前n项和Tn的表达式.解(1)bn=dn-d+1,前n行共有1+2+3+…+n=eq\f(nn+1,2)个数,因为13=eq\f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《光电技术实验2》课程教学大纲
- 《领导科学》课程教学大纲
- 牵伸及关节活动度训练课件
- 2024年仿石漆质保合同范本
- 2024年出售楼顶花园合同范本
- 2024年代款房屋买卖合同范本
- 2024年便利店股权合作合同范本
- 江苏省泰州市泰兴市2024-2025学年七年级上学期期中语文试卷(含答案解析)
- 《餐饮服务与管理》高教版(第二版)6.5鸡尾酒调制单元练习卷(解析版)
- 河南省部分示范性高中2024-2025学年高三上学期11月联考物理试题(含解析)
- GB/T 7305-2003石油和合成液水分离性测定法
- GB/T 4436-2012铝及铝合金管材外形尺寸及允许偏差
- 第10讲-群体决策模型
- GB/T 3876-2007钼及钼合金板
- GB/T 2007.6-1987散装矿产品取样、制样通则水分测定方法-热干燥法
- GB/T 1839-2008钢产品镀锌层质量试验方法
- 医院医疗欠费管理制度
- 北京市第5届迎春杯小学数学竞赛决赛试题doc
- DB11∕994-2021 平战结合人民防空工程设计规范
- 信号与系统课设报告
- 《文言宾语前置句式》课件(广东省省级优课)
评论
0/150
提交评论