2022届江西省南昌市新建二中高考仿真模拟数学试卷含解析_第1页
2022届江西省南昌市新建二中高考仿真模拟数学试卷含解析_第2页
2022届江西省南昌市新建二中高考仿真模拟数学试卷含解析_第3页
2022届江西省南昌市新建二中高考仿真模拟数学试卷含解析_第4页
2022届江西省南昌市新建二中高考仿真模拟数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知斜率为的直线与双曲线交于两点,若为线段中点且(为坐标原点),则双曲线的离心率为()A. B.3 C. D.2.已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为().A. B. C. D.3.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147 B.294 C.882 D.17644.运行如图程序,则输出的S的值为()A.0 B.1 C.2018 D.20175.已知集合,,则=()A. B. C. D.6.已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是()A. B. C. D.7.已知集合,,若,则()A. B. C. D.8.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:)服从正态分布,则直径在内的概率为()附:若,则,.A.0.6826 B.0.8413 C.0.8185 D.0.95449.已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是()A. B. C. D.110.若,则“”是“的展开式中项的系数为90”的()A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件11.设为虚数单位,复数,则实数的值是()A.1 B.-1 C.0 D.212.正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,且,则最小值为__________.14.已知实数、满足,且可行域表示的区域为三角形,则实数的取值范围为______,若目标函数的最小值为-1,则实数等于______.15.如图,在体积为V的圆柱中,以线段上的点O为项点,上下底面为底面的两个圆锥的体积分别为,,则的值是______.16.如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和,并将两弧各五等分,分点依次为、、、、、以及、、、、、.一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为________.参考数据:;;)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程:(2)求与交点的极坐标.18.(12分)已知函数.(Ⅰ)当时,讨论函数的单调区间;(Ⅱ)若对任意的和恒成立,求实数的取值范围.19.(12分)在四棱锥中,底面是边长为2的菱形,是的中点.(1)证明:平面;(2)设是线段上的动点,当点到平面距离最大时,求三棱锥的体积.20.(12分)如图,在三棱锥中,平面平面,,.点,,分别为线段,,的中点,点是线段的中点.(1)求证:平面.(2)判断与平面的位置关系,并证明.21.(12分)如图,已知正方形所在平面与梯形所在平面垂直,BM∥AN,,,.(1)证明:平面;(2)求点N到平面CDM的距离.22.(10分)已知圆M:及定点,点A是圆M上的动点,点B在上,点G在上,且满足,,点G的轨迹为曲线C.(1)求曲线C的方程;(2)设斜率为k的动直线l与曲线C有且只有一个公共点,与直线和分别交于P、Q两点.当时,求(O为坐标原点)面积的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

设,代入双曲线方程相减可得到直线的斜率与中点坐标之间的关系,从而得到的等式,求出离心率.【详解】,设,则,两式相减得,∴,.故选:B.【点睛】本题考查求双曲线的离心率,解题方法是点差法,即出现双曲线的弦中点坐标时,可设弦两端点坐标代入双曲线方程相减后得出弦所在直线斜率与中点坐标之间的关系.2.D【解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为.考点:二项式系数,二项式系数和.3.A【解析】

根据题目所给的步骤进行计算,由此求得的值.【详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.4.D【解析】

依次运行程序框图给出的程序可得第一次:,不满足条件;第二次:,不满足条件;第三次:,不满足条件;第四次:,不满足条件;第五次:,不满足条件;第六次:,满足条件,退出循环.输出1.选D.5.C【解析】

计算,,再计算交集得到答案.【详解】,,故.故选:.【点睛】本题考查了交集运算,意在考查学生的计算能力.6.B【解析】命题p:,为,又为真命题的充分不必要条件为,故7.A【解析】

由,得,代入集合B即可得.【详解】,,,即:,故选:A【点睛】本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题.8.C【解析】

根据服从的正态分布可得,,将所求概率转化为,结合正态分布曲线的性质可求得结果.【详解】由题意,,,则,,所以,.故果实直径在内的概率为0.8185.故选:C【点睛】本题考查根据正态分布求解待定区间的概率问题,考查了正态曲线的对称性,属于基础题.9.B【解析】

先根据导数的几何意义写出在两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数,结合导数求出最小值,即可选出正确答案.【详解】解:当时,,则;当时,则.设为函数图像上的两点,当或时,,不符合题意,故.则在处的切线方程为;在处的切线方程为.由两切线重合可知,整理得.不妨设则,由可得则当时,的最大值为.则在上单调递减,则.故选:B.【点睛】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出和的函数关系式.本题的易错点是计算.10.B【解析】

求得的二项展开式的通项为,令时,可得项的系数为90,即,求得,即可得出结果.【详解】若则二项展开式的通项为,令,即,则项的系数为,充分性成立;当的展开式中项的系数为90,则有,从而,必要性不成立.故选:B.【点睛】本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问题的能力和计算能力,难度较易.11.A【解析】

根据复数的乘法运算化简,由复数的意义即可求得的值.【详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.12.D【解析】

如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球心为,连接,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积.【详解】如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,.因为,故,因为,故.由正弦定理可得,故,又因为,故.因为,故平面,所以,因为平面,平面,故,故,所以四边形为平行四边形,所以,所以,故外接球的半径为,外接球的表面积为.故选:D.【点睛】本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

首先整理所给的代数式,然后结合均值不等式的结论即可求得其最小值.【详解】,结合可知原式,且,当且仅当时等号成立.即最小值为.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14.【解析】

作出不等式组对应的平面区域,利用目标函数的几何意义,结合目标函数的最小值,利用数形结合即可得到结论.【详解】作出可行域如图,则要为三角形需满足在直线下方,即,;目标函数可视为,则为斜率为1的直线纵截距的相反数,该直线截距最大在过点时,此时,直线:,与:的交点为,该点也在直线:上,故,故答案为:;.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于基础题.15.【解析】

根据圆柱的体积为,以及圆锥的体积公式,计算即得.【详解】由题得,,得.故答案为:【点睛】本题主要考查圆锥体的体积,是基础题.16.【解析】

根据空间位置关系,将平面旋转后使得各点在同一平面内,结合角的关系即可求得两点间距离的三角函数表达式.根据所给参考数据即可得解.【详解】棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和.将平面绕旋转至与平面共面的位置,如下图所示:则,所以;将平面绕旋转至与平面共面的位置,将绕旋转至与平面共面的位置,如下图所示:则,所以;因为,且由诱导公式可得,所以最短距离为,故答案为:.【点睛】本题考查了空间几何体中最短距离的求法,注意将空间几何体展开至同一平面内求解的方法,三角函数诱导公式的应用,综合性强,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)与交点的极坐标为,和【解析】

(1)先把曲线化成直角坐标方程,再化简成极坐标方程;(2)联立曲线和曲线的方程解得即可.【详解】(1)曲线的直角坐标方程为:,即.的参数方程化为极坐标方程为;(2)联立可得:,与交点的极坐标为,和.【点睛】本题考查了参数方程,直角坐标方程,极坐标方程的互化,也考查了极坐标方程的联立,属于基础题.18.(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)首先求得导函数,然后结合导函数的解析式分类讨论函数的单调性即可;(Ⅱ)将原问题进行等价转化为,,恒成立,然后构造新函数,结合函数的性质确定实数的取值范围即可.【详解】解:(Ⅰ)当时,,当时,在上恒成立,函数在上单调递减;当时,由得:;由得:.∴当时,函数的单调递减区间是,无单调递增区间:当时,函数的单调递减区间是,函数的单调递增区间是.(Ⅱ)对任意的和,恒成立等价于:,,恒成立.即,,恒成立.令:,,,则得,由此可得:在区间上单调递减,在区间上单调递增,∴当时,,即又∵,∴实数的取值范围是:.【点睛】本题主要考查导函数研究函数的单调性和恒成立问题,考查分类讨论的数学思想,等价转化的数学思想等知识,属于中等题.19.(1)见解析(2)【解析】

(1)连接与交于,连接,证明即可得证线面平行;(2)首先证明平面(只要取中点,可证平面,从而得,同理得),因此点到直线的距离即为点到平面的距离,由平面几何知识易得最大值,然后可计算体积.【详解】(1)证明:连接与交于,连接,因为是菱形,所以为的中点,又因为为的中点,所以,因为平面平面,所以平面.(2)解:取中点,连接,因为四边形是菱形,,且,所以,又,所以平面,又平面,所以.同理可证:,又,所以平面,所以平面平面,又平面平面,所以点到直线的距离即为点到平面的距离,过作直线的垂线段,在所有垂线段中长度最大为,因为为的中点,故点到平面的最大距离为1,此时,为的中点,即,所以,所以.【点睛】本题考查证明线面平行,考查求棱锥的体积,掌握面面垂直与线面垂直的判定与性质是解题关键.20.(1)见解析(2)平面.见解析【解析】

(1)要证平面,只需证明,,即可求得答案;(2)连接交于点,连接,根据已知条件求证,即可判断与平面的位置关系,进而求得答案.【详解】(1),为边的中点,,平面平面,平面平面,平面,平面,,在内,,为所在边的中点,,又,,平面.(2)判断可知,平面,证明如下:连接交于点,连接.、、分别为边、、的中点,.又是的重心,,,平面,平面,平面.【点睛】本题主要考查了求证线面垂直和线面平行,解题关键是掌握线面垂直判定定理和线面平行判断定理,考查了分析能力和空间想象能力,属于中档题.21.(1)证明见解析(2)【解析】

(1)因为正方形ABCD所在平面与梯形ABMN所在平面垂直,平面平面,,所以平面ABMN

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论