版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,,若,则()A. B. C. D.2.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147 B.294 C.882 D.17643.在中,角所对的边分别为,已知,.当变化时,若存在最大值,则正数的取值范围为A. B. C. D.4.已知集合,集合,那么等于()A. B. C. D.5.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为()A. B.2 C. D.6.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为()A. B. C. D.7.设,则““是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必条件8.下列函数中既关于直线对称,又在区间上为增函数的是()A.. B.C. D.9.某工厂只生产口罩、抽纸和棉签,如图是该工厂年至年各产量的百分比堆积图(例如:年该工厂口罩、抽纸、棉签产量分别占、、),根据该图,以下结论一定正确的是()A.年该工厂的棉签产量最少B.这三年中每年抽纸的产量相差不明显C.三年累计下来产量最多的是口罩D.口罩的产量逐年增加10.在中,“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件11.等比数列中,,则与的等比中项是()A.±4 B.4 C. D.12.下列几何体的三视图中,恰好有两个视图相同的几何体是()A.正方体 B.球体C.圆锥 D.长宽高互不相等的长方体二、填空题:本题共4小题,每小题5分,共20分。13.已知圆C:经过抛物线E:的焦点,则抛物线E的准线与圆C相交所得弦长是__________.14.某同学周末通过抛硬币的方式决定出去看电影还是在家学习,抛一枚硬币两次,若两次都是正面朝上,就在家学习,否则出去看电影,则该同学在家学习的概率为____________.15.已知点是抛物线上动点,是抛物线的焦点,点的坐标为,则的最小值为______________.16.已知定义在上的函数的图象关于点对称,,若函数图象与函数图象的交点为,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的定义域为,且满足,当时,有,且.(1)求不等式的解集;(2)对任意,恒成立,求实数的取值范围.18.(12分)如图,三棱台中,侧面与侧面是全等的梯形,若,且.(Ⅰ)若,,证明:∥平面;(Ⅱ)若二面角为,求平面与平面所成的锐二面角的余弦值.19.(12分)已知函数.(1)若函数的图象与轴有且只有一个公共点,求实数的取值范围;(2)若对任意成立,求实数的取值范围.20.(12分)设函数,.(Ⅰ)讨论的单调性;(Ⅱ)时,若,,求证:.21.(12分)已知函数.(1)若曲线存在与轴垂直的切线,求的取值范围.(2)当时,证明:.22.(10分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.(1)求证:平面.(2)求二面角的大小.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据向量坐标运算求得,由平行关系构造方程可求得结果.【详解】,,解得:故选:【点睛】本题考查根据向量平行关系求解参数值的问题,涉及到平面向量的坐标运算;关键是明确若两向量平行,则.2、A【解析】
根据题目所给的步骤进行计算,由此求得的值.【详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.3、C【解析】
因为,,所以根据正弦定理可得,所以,,所以,其中,,因为存在最大值,所以由,可得,所以,所以,解得,所以正数的取值范围为,故选C.4、A【解析】
求出集合,然后进行并集的运算即可.【详解】∵,,∴.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.5、A【解析】
由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率.【详解】由题意∵,∴由双曲线定义得,从而得,,在中,由余弦定理得,化简得.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式.6、D【解析】
根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【点睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.7、B【解析】
解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案.【详解】由,得,又由,得,因为集合,所以“”是“”的必要不充分条件.故选:B【点睛】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法.8、C【解析】
根据函数的对称性和单调性的特点,利用排除法,即可得出答案.【详解】A中,当时,,所以不关于直线对称,则错误;B中,,所以在区间上为减函数,则错误;D中,,而,则,所以不关于直线对称,则错误;故选:C.【点睛】本题考查函数基本性质,根据函数的解析式判断函数的对称性和单调性,属于基础题.9、C【解析】
根据该厂每年产量未知可判断A、B、D选项的正误,根据每年口罩在该厂的产量中所占的比重最大可判断C选项的正误.综合可得出结论.【详解】由于该工厂年至年的产量未知,所以,从年至年棉签产量、抽纸产量以及口罩产量的变化无法比较,故A、B、D选项错误;由堆积图可知,从年至年,该工厂生产的口罩占该工厂的总产量的比重是最大的,则三年累计下来产量最多的是口罩,C选项正确.故选:C.【点睛】本题考查堆积图的应用,考查数据处理能力,属于基础题.10、D【解析】
通过列举法可求解,如两角分别为时【详解】当时,,但,故充分条件推不出;当时,,但,故必要条件推不出;所以“”是“”的既不充分也不必要条件.故选:D.【点睛】本题考查命题的充分与必要条件判断,三角函数在解三角形中的具体应用,属于基础题11、A【解析】
利用等比数列的性质可得,即可得出.【详解】设与的等比中项是.
由等比数列的性质可得,.
∴与的等比中项
故选A.【点睛】本题考查了等比中项的求法,属于基础题.12、C【解析】
根据基本几何体的三视图确定.【详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形.故选:C.【点睛】本题考查基本几何体的三视图,掌握基本几何体的三视图是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出抛物线的焦点坐标,代入圆的方程,求出的值,再求出准线方程,利用点到直线的距离公式,求出弦心距,利用勾股定理可以求出弦长的一半,进而求出弦长.【详解】抛物线E:的准线为,焦点为(0,1),把焦点的坐标代入圆的方程中,得,所以圆心的坐标为,半径为5,则圆心到准线的距离为1,所以弦长.【点睛】本题考查了抛物线的准线、圆的弦长公式.14、【解析】
采用列举法计算古典概型的概率.【详解】抛掷一枚硬币两次共有4种情况,即(正,正),(正,反),(反,正),(反,反),在家学习只有1种情况,即(正,正),故该同学在家学习的概率为.故答案为:【点睛】本题考查古典概型的概率计算,考查学生的基本计算能力,是一道基础题.15、【解析】
过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当和抛物线相切时,的值最小.再利用直线的斜率公式、导数的几何意义求得切点的坐标,从而求得的最小值.【详解】解:由题意可得,抛物线的焦点,准线方程为,过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当最小时,的值最小.设切点,由的导数为,则的斜率为,求得,可得,,,.故答案为:.【点睛】本题考查抛物线的定义,性质的简单应用,直线的斜率公式,导数的几何意义,属于中档题.16、4038.【解析】
由函数图象的对称性得:函数图象与函数图象的交点关于点对称,则,,即,得解.【详解】由知:得函数的图象关于点对称又函数的图象关于点对称则函数图象与函数图象的交点关于点对称则故,即本题正确结果:【点睛】本题考查利用函数图象的对称性来求值的问题,关键是能够根据函数解析式判断出函数的对称中心,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)利用定义法求出函数在上单调递增,由和,求出,求出,运用单调性求出不等式的解集;(2)由于恒成立,由(1)得出在上单调递增,恒成立,设,利用三角恒等变换化简,结合恒成立的条件,构造新函数,利用单调性和最值,求出实数的取值范围.【详解】(1)设,,所以函数在上单调递增,又因为和,则,所以得解得,即,故的取值范围为;(2)由于恒成立,恒成立,设,则,令,则,所以在区间上单调递增,所以,根据条件,只要,所以.【点睛】本题考查利用定义法求函数的单调性和利用单调性求不等式的解集,考查不等式恒成立问题,还运用降幂公式、两角和与差的余弦公式、辅助角公式,考查转化思想和解题能力.18、(Ⅰ)见解析;(Ⅱ).【解析】试题分析:(Ⅰ)连接,由比例可得∥,进而得线面平行;(Ⅱ)过点作的垂线,建立空间直角坐标系,不妨设,则求得平面的法向量为,设平面的法向量为,由求二面角余弦即可.试题解析:(Ⅰ)证明:连接,梯形,,易知:;又,则∥;平面,平面,可得:∥平面;(Ⅱ)侧面是梯形,,,,则为二面角的平面角,;均为正三角形,在平面内,过点作的垂线,如图建立空间直角坐标系,不妨设,则,故点,;设平面的法向量为,则有:;设平面的法向量为,则有:;,故平面与平面所成的锐二面角的余弦值为.19、(1)(2)【解析】
(1)求出及其导函数,利用研究的单调性和最值,根据零点存在定理和零点定义可得的范围.(2)令,题意说明时,恒成立.同样求出导函数,由研究的单调性,通过分类讨论可得的单调性得出结论.【详解】解(1)函数所以讨论:①当时,无零点;②当时,,所以在上单调递增.取,则又,所以,此时函数有且只有一个零点;③当时,令,解得(舍)或当时,,所以在上单调递减;当时,所以在上单调递增.据题意,得,所以(舍)或综上,所求实数的取值范围为.(2)令,根据题意知,当时,恒成立.又讨论:①若,则当时,恒成立,所以在上是增函数.又函数在上单调递增,在上单调递增,所以存在使,不符合题意.②若,则当时,恒成立,所以在上是增函数,据①求解知,不符合题意.③若,则当时,恒有,故在上是减函数,于是“对任意成立”的充分条件是“”,即,解得,故综上,所求实数的取值范围是.【点睛】本题考查函数零点问题,考查不等式恒成立问题,考查用导数研究函数的单调性.解题关键是通过分类讨论研究函数的单调性.本题难度较大,考查掌握转化与化归思想,考查学生分析问题解决问题的能力.20、(1)证明见解析;(2)证明见解析.【解析】
(1)首先对函数求导,再根据参数的取值,讨论的正负,即可求出关于的单调性即可;(2)首先通过构造新函数,讨论新函数的单调性,根据新函数的单调性证明.【详解】(1),令,则,令得,当时,则在单调递减,当时,则在单调递增,所以,当时,,即,则在上单调递增,当时,,易知当时,,当时,,由零点存在性定理知,,不妨设,使得,当时,,即,当时,,即,当时,,即,所以在和上单调递增,在单调递减;(2)证明:构造函数,,,,整理得,,(当时等号成立),所以在上单调递增,则,所以在上单调递增,,这里不妨设,欲证,即证由(1)知时,在上单调递增,则需证,由已知有,只需证,即证,由在上单调递增,且时,有,故成立,从而得证.【点睛】本题主要考查了导数含参分类讨论单调性,借助构造函数和单调性证明不等式,属于难题.21、(1)(2)证明见解析【解析】
(1)在上有解,,设,求导根据函数的单调性得到最值,得到答案.(2)证明,只需证,记,求导得到函数的单调性,得到函数的最小值,得到证明.【详解】(1)由题可得,在上有解,则,令,,当时,单调递增;当时,单调递减.所以是的最大值点,所以.(2)由,所以,要证明,只需证,即证.记在上单调递增,且,当时,单调递减;当时,单调递增.所以是的最小值点,,则,故.【点睛】本题考查了函数的切线问题,证明不等式,意在考查学生的综合应用能力和转化能力.22、(1)见解析;(2)【解析】
(1)根据面面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文化传媒行业美工工作总结
- 婚纱店前台接待员总结
- 网络营销实训心得体会和收获
- 2024年物流配送中心智能化升级合作协议3篇
- 班级竞技活动的组织与参与计划
- 幼儿园大班数学课教案《牙签摆图形》及教学反思
- 家具行业采购供应商管理
- 描写描写方法6篇
- 教育行业员工激励策略分享
- 媒体编辑前台接待总结
- 2024年医院全面质量管理方案
- 亚马逊合伙运营协议书模板
- 01685《动漫艺术概论》历年考试真题试题库(含答案)
- 【传统村落的保护与发展探究的文献综述8600字】
- 金属冶炼(铅、锌冶炼)主要负责人安全资格考试题及答案
- 2023-2024全国初中物理竞赛试题:物态变化(学生版)
- 《计算机组成原理》周建敏主编课后习题答案
- DL∕T 1315-2013 电力工程接地装置用放热焊剂技术条件
- 2023-2024学年广东名校七年级语文(下)期末试卷附答案解析
- 2025届内蒙古化学九年级第一学期期末联考试题含解析
- 青岛市平度市2022-2023学年七年级上学期期末地理试题
评论
0/150
提交评论