2021-2022学年江西省赣州市赣源中学高三最后一卷数学试卷含解析_第1页
2021-2022学年江西省赣州市赣源中学高三最后一卷数学试卷含解析_第2页
2021-2022学年江西省赣州市赣源中学高三最后一卷数学试卷含解析_第3页
2021-2022学年江西省赣州市赣源中学高三最后一卷数学试卷含解析_第4页
2021-2022学年江西省赣州市赣源中学高三最后一卷数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数(其中为自然对数的底数)有两个零点,则实数的取值范围是()A. B.C. D.2.在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则()A. B.C. D.3.某设备使用年限x(年)与所支出的维修费用y(万元)的统计数据分别为,,,,由最小二乘法得到回归直线方程为,若计划维修费用超过15万元将该设备报废,则该设备的使用年限为()A.8年 B.9年 C.10年 D.11年4.已知实数满足约束条件,则的最小值是A. B. C.1 D.45.已知复数,为的共轭复数,则()A. B. C. D.6.已知函数,将的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图象向上平移个单位长度,得到函数的图象,若,则的值可能为()A. B. C. D.7.已知关于的方程在区间上有两个根,,且,则实数的取值范围是()A. B. C. D.8.五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为()A. B. C. D.9.复数满足,则()A. B. C. D.10.已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为()A. B. C.8 D.611.函数的部分图象如图所示,已知,函数的图象可由图象向右平移个单位长度而得到,则函数的解析式为()A. B.C. D.12.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是()A.丙被录用了 B.乙被录用了 C.甲被录用了 D.无法确定谁被录用了二、填空题:本题共4小题,每小题5分,共20分。13.已知实数满足则点构成的区域的面积为____,的最大值为_________14.若复数满足,其中是虚数单位,是的共轭复数,则________.15.记为数列的前项和.若,则______.16.已知,则______,______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合,集合,.(1)求集合B;(2)记,且集合M中有且仅有一个整数,求实数k的取值范围.18.(12分)已知函数f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)当x>0时,若函数g(x)(a>0)的最小值恒大于f(x),求实数a的取值范围.19.(12分)已知函数,.(1)若对于任意实数,恒成立,求实数的范围;(2)当时,是否存在实数,使曲线:在点处的切线与轴垂直?若存在,求出的值;若不存在,说明理由.20.(12分)如图,在四棱锥中,是边长为的正方形的中心,平面,为的中点.(Ⅰ)求证:平面平面;(Ⅱ)若,求二面角的余弦值.21.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.22.(10分)已知函数,其中为实常数.(1)若存在,使得在区间内单调递减,求的取值范围;(2)当时,设直线与函数的图象相交于不同的两点,,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

求出导函数,确定函数的单调性,确定函数的最值,根据零点存在定理可确定参数范围.【详解】,当时,,单调递增,当时,,单调递减,∴在上只有一个极大值也是最大值,显然时,,时,,因此要使函数有两个零点,则,∴.故选:B.【点睛】本题考查函数的零点,考查用导数研究函数的最值,根据零点存在定理确定参数范围.2.B【解析】

设,则,,由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.【详解】设,则,,因为B,P,D三点共线,C,P,E三点共线,所以,,所以,.故选:B.【点睛】本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.3.D【解析】

根据样本中心点在回归直线上,求出,求解,即可求出答案.【详解】依题意在回归直线上,,由,估计第年维修费用超过15万元.故选:D.【点睛】本题考查回归直线过样本中心点、以及回归方程的应用,属于基础题.4.B【解析】

作出该不等式组表示的平面区域,如下图中阴影部分所示,设,则,易知当直线经过点时,z取得最小值,由,解得,所以,所以,故选B.5.C【解析】

求出,直接由复数的代数形式的乘除运算化简复数.【详解】.故选:C【点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.6.C【解析】

利用二倍角公式与辅助角公式将函数的解析式化简,然后利用图象变换规律得出函数的解析式为,可得函数的值域为,结合条件,可得出、均为函数的最大值,于是得出为函数最小正周期的整数倍,由此可得出正确选项.【详解】函数,将函数的图象上的所有点的横坐标缩短到原来的倍,得的图象;再把所得图象向上平移个单位,得函数的图象,易知函数的值域为.若,则且,均为函数的最大值,由,解得;其中、是三角函数最高点的横坐标,的值为函数的最小正周期的整数倍,且.故选C.【点睛】本题考查三角函数图象变换,同时也考查了正弦型函数与周期相关的问题,解题的关键在于确定、均为函数的最大值,考查分析问题和解决问题的能力,属于中等题.7.C【解析】

先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.【详解】由题化简得,,作出的图象,又由易知.故选:C.【点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.8.A【解析】

列举出金、木、水、火、土任取两个的所有结果共10种,其中2类元素相生的结果有5种,再根据古典概型概率公式可得结果.【详解】金、木、水、火、土任取两类,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10种结果,其中两类元素相生的有火木、火土、木水、水金、金土共5结果,所以2类元素相生的概率为,故选A.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.9.C【解析】

利用复数模与除法运算即可得到结果.【详解】解:,故选:C【点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.10.C【解析】

由椭圆的定义以及双曲线的定义、离心率公式化简,结合基本不等式即可求解.【详解】设椭圆的长半轴长为,双曲线的半实轴长为,半焦距为,则,,设由椭圆的定义以及双曲线的定义可得:,则当且仅当时,取等号.故选:C.【点睛】本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.11.A【解析】

由图根据三角函数图像的对称性可得,利用周期公式可得,再根据图像过,即可求出,再利用三角函数的平移变换即可求解.【详解】由图像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因为函数的图象由图象向右平移个单位长度而得到,所以.故选:A【点睛】本题考查了由图像求三角函数的解析式、三角函数图像的平移伸缩变换,需掌握三角形函数的平移伸缩变换原则,属于基础题.12.C【解析】

假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【点睛】本题考查了逻辑推理能力,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13.811【解析】

画出不等式组表示的平面区域,数形结合求得区域面积以及目标函数的最值.【详解】不等式组表示的平面区域如下图所示:数形结合可知,可行域为三角形,且底边长,高为,故区域面积;令,变为,显然直线过时,z最大,故.故答案为:;11.【点睛】本题考查简单线性规划问题,涉及区域面积的求解,属基础题.14.【解析】

设,代入已知条件进行化简,根据复数相等的条件,求得的值.【详解】设,由,得,所以,所以.故答案为:【点睛】本小题主要考查共轭复数,考查复数相等的条件,属于基础题.15.1【解析】

由已知数列递推式可得数列是以16为首项,以为公比的等比数列,再由等比数列的前项和公式求解.【详解】由,得,.且,则,即.数列是以16为首项,以为公比的等比数列,则.故答案为:1.【点睛】本题主要考查数列递推式,考查等比数列的前项和,意在考查学生对这些知识的理解掌握水平.16.【解析】

利用两角和的正切公式结合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式结合弦化切思想求出和的值,进而利用两角差的余弦公式求出的值.【详解】,,,.故答案为:;.【点睛】本题主要考查三角函数值的计算,考查两角和的正切公式、两角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的应用,难度不大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】

(1)由不等式可得,讨论与的关系,即可得到结果;(2)先解得不等式,由集合M中有且仅有一个整数,当时,则M中仅有的整数为;当时,则M中仅有的整数为,进而求解即可.【详解】解:(1)因为,所以,当,即时,;当,即时,;当,即时,.(2)由得,当,即时,M中仅有的整数为,所以,即;当,即时,M中仅有的整数为,所以,即;综上,满足题意的k的范围为【点睛】本题考查解一元二次不等式,考查由交集的结果求参数范围,考查分类讨论思想与运算能力.18.(Ⅰ);(Ⅱ)。【解析】

(Ⅰ)分类讨论,去掉绝对值,求得原绝对值不等式的解集;(Ⅱ)由条件利用基本不等式求得,,再由,求得的范围.【详解】(Ⅰ)当时,原不等式可化为,此时不成立;当时,原不等式可化为,解得,即;当时,原不等式可化为,解得.综上,原不等式的解集是.(Ⅱ)因为,当且仅当时等号成立,所以.当时,,所以.所以,解得,故实数的取值范围为.【点睛】本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.19.(1);(2)不存在实数,使曲线在点处的切线与轴垂直.【解析】

(1)分类时,恒成立,时,分离参数为,引入新函数,利用导数求得函数最值即可;(2),导出导函数,问题转化为在上有解.再用导数研究的性质可得.【详解】解:(1)因为当时,恒成立,所以,若,为任意实数,恒成立.若,恒成立,即当时,,设,,当时,,则在上单调递增,当时,,则在上单调递减,所以当时,取得最大值.,所以,要使时,恒成立,的取值范围为.(2)由题意,曲线为:.令,所以,设,则,当时,,故在上为增函数,因此在区间上的最小值,所以,当时,,,所以,曲线在点处的切线与轴垂直等价于方程在上有实数解.而,即方程无实数解.故不存在实数,使曲线在点处的切线与轴垂直.【点睛】本题考查不等式恒成立,考查用导数的几何意义,由导数几何把问题进行转化是解题关键.本题属于困难题.20.(Ⅰ)详见解析;(Ⅱ).【解析】

(Ⅰ)由正方形的性质得出,由平面得出,进而可推导出平面,再利用面面垂直的判定定理可证得结论;(Ⅱ)取的中点,连接、,以、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法能求出二面角的余弦值.【详解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中点,连接、,是正方形,易知、、两两垂直,以点为坐标原点,以、、所在直线分别为、、轴建立如图所示的空间直角坐标系,在中,,,,、、、,设平面的一个法向量,,,由,得,令,则,,.设平面的一个法向量,,,由,得,取,得,,得.,二面角为钝二面角,二面角的余弦值为.【点睛】本题考查面面垂直的证明,同时也考查了利用空间向量法求解二面角,考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论