2022-2023学年吉林省吉林市第五十五中学高三数学第一学期期末检测模拟试题含解析_第1页
2022-2023学年吉林省吉林市第五十五中学高三数学第一学期期末检测模拟试题含解析_第2页
2022-2023学年吉林省吉林市第五十五中学高三数学第一学期期末检测模拟试题含解析_第3页
2022-2023学年吉林省吉林市第五十五中学高三数学第一学期期末检测模拟试题含解析_第4页
2022-2023学年吉林省吉林市第五十五中学高三数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量的分布列是则()A. B. C. D.2.已知集合,B={y∈N|y=x﹣1,x∈A},则A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}3.函数的图像大致为().A. B.C. D.4.已知中,,则()A.1 B. C. D.5.已知正项等比数列的前项和为,则的最小值为()A. B. C. D.6.设是两条不同的直线,是两个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,,则 D.若,,,则7.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为A. B. C. D.8.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻).若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两个阳爻的概率为()A. B. C. D.9.已知函数的图象的一条对称轴为,将函数的图象向右平行移动个单位长度后得到函数图象,则函数的解析式为()A. B.C. D.10.已知函数在上有两个零点,则的取值范围是()A. B. C. D.11.在中,是的中点,,点在上且满足,则等于()A. B. C. D.12.设a,b都是不等于1的正数,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.设集合,(其中e是自然对数的底数),且,则满足条件的实数a的个数为______.14.我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”.他把三角形的三条边分别称为小斜、中斜和大斜.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是在方程中,p为“隅”,q为“实”.即若的大斜、中斜、小斜分别为a,b,c,则.已知点D是边AB上一点,,,,,则的面积为________.15.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.16.设点P在函数的图象上,点Q在函数的图象上,则线段PQ长度的最小值为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在等腰梯形中,AD∥BC,,,,,分别为,,的中点,以为折痕将折起,使点到达点位置(平面).(1)若为直线上任意一点,证明:MH∥平面;(2)若直线与直线所成角为,求二面角的余弦值.18.(12分)已知椭圆的左、右焦点分别为、,点在椭圆上,且.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线与椭圆相交于、两点,与圆相交于、两点,求的取值范围.19.(12分)已知椭圆:(),四点,,,中恰有三点在椭圆上.(1)求椭圆的方程;(2)设椭圆的左右顶点分别为.是椭圆上异于的动点,求的正切的最大值.20.(12分)已知数列是公比为正数的等比数列,其前项和为,满足,且成等差数列.(1)求的通项公式;(2)若数列满足,求的值.21.(12分)已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB的中点是,(1)求椭圆的方程;(2)过原点的直线l与线段AB相交(不含端点)且交椭圆于C,D两点,求四边形面积的最大值.22.(10分)在四棱椎中,四边形为菱形,,,,,,分别为,中点..(1)求证:;(2)求平面与平面所成锐二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

利用分布列求出,求出期望,再利用期望的性质可求得结果.【详解】由分布列的性质可得,得,所以,,因此,.故选:C.【点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查.2、A【解析】

解出集合A和B即可求得两个集合的并集.【详解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故选:A.【点睛】此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.3、A【解析】

本题采用排除法:由排除选项D;根据特殊值排除选项C;由,且无限接近于0时,排除选项B;【详解】对于选项D:由题意可得,令函数,则,;即.故选项D排除;对于选项C:因为,故选项C排除;对于选项B:当,且无限接近于0时,接近于,,此时.故选项B排除;故选项:A【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.4、C【解析】

以为基底,将用基底表示,根据向量数量积的运算律,即可求解.【详解】,,.故选:C.【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.5、D【解析】

由,可求出等比数列的通项公式,进而可知当时,;当时,,从而可知的最小值为,求解即可.【详解】设等比数列的公比为,则,由题意得,,得,解得,得.当时,;当时,,则的最小值为.故选:D.【点睛】本题考查等比数列的通项公式的求法,考查等比数列的性质,考查学生的计算求解能力,属于中档题.6、C【解析】

根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果.【详解】对于,当为内与垂直的直线时,不满足,错误;对于,设,则当为内与平行的直线时,,但,错误;对于,由,知:,又,,正确;对于,设,则当为内与平行的直线时,,错误.故选:.【点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.7、A【解析】

求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,,求出等式左边式子的范围,将等式右边代入,从而求解.【详解】解:由题意可得,焦点F(1,0),准线方程为x=−1,

过点P作PM垂直于准线,M为垂足,

由抛物线的定义可得|PF|=|PM|=x+1,

记∠KPF的平分线与轴交于

根据角平分线定理可得,,当时,,当时,,,综上:.故选:A.【点睛】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.8、B【解析】

基本事件总数为个,都恰有两个阳爻包含的基本事件个数为个,由此求出概率.【详解】解:由图可知,含有两个及以上阳爻的卦有巽、离、兑、乾四卦,取出两卦的基本事件有(巽,离),(巽,兑),(巽,乾),(离,兑),(离,乾),(兑,乾)共个,其中符合条件的基本事件有(巽,离),(巽,兑),(离,兑)共个,所以,所求的概率.故选:B.【点睛】本题渗透传统文化,考查概率、计数原理等基本知识,考查抽象概括能力和应用意识,属于基础题.9、C【解析】

根据辅助角公式化简三角函数式,结合为函数的一条对称轴可求得,代入辅助角公式得的解析式.根据三角函数图像平移变换,即可求得函数的解析式.【详解】函数,由辅助角公式化简可得,因为为函数图象的一条对称轴,代入可得,即,化简可解得,即,所以将函数的图象向右平行移动个单位长度可得,则,故选:C.【点睛】本题考查了辅助角化简三角函数式的应用,三角函数对称轴的应用,三角函数图像平移变换的应用,属于中档题.10、C【解析】

对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【详解】∵,.当时,,在上单调递增,不合题意.当时,,在上单调递减,也不合题意.当时,则时,,在上单调递减,时,,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.11、B【解析】

由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解.【详解】解:∵M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足∴P是三角形ABC的重心∴又∵AM=1∴∴故选B.【点睛】判断P点是否是三角形的重心有如下几种办法:①定义:三条中线的交点.②性质:或取得最小值③坐标法:P点坐标是三个顶点坐标的平均数.12、C【解析】

根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可.【详解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分条件,故选C.【点睛】本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

可看出,这样根据即可得出,从而得出满足条件的实数的个数为1.【详解】解:,或,在同一平面直角坐标系中画出函数与的图象,由图可知与无交点,无解,则满足条件的实数的个数为.故答案为:.【点睛】考查列举法的定义,交集的定义及运算,以及知道方程无解,属于基础题.14、.【解析】

利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求积术”公式即可求得答案.【详解】,所以,由余弦定理可知,得.根据“三斜求积术”可得,所以.【点睛】本题考查正切的和角公式,同角三角函数的基本关系式,余弦定理的应用,考查学生分析问题的能力和计算整理能力,难度较易.15、1元【解析】设分别生产甲乙两种产品为桶,桶,利润为元

则根据题意可得目标函数,作出可行域,如图所示作直线然后把直线向可行域平移,

由图象知当直线经过时,目标函数的截距最大,此时最大,

由可得,即此时最大,

即该公司每天生产的甲4桶,乙4桶,可获得最大利润,最大利润为1.【点睛】本题考查用线性规划知识求利润的最大值,根据条件建立不等式关系,以及利用线性规划的知识进行求解是解决本题的关键.16、【解析】

由解析式可分析两函数互为反函数,则图象关于对称,则点到的距离的最小值的二倍即为所求,利用导函数即可求得最值.【详解】由题,因为与互为反函数,则图象关于对称,设点为,则到直线的距离为,设,则,令,即,所以当时,,即单调递减;当时,,即单调递增,所以,则,所以的最小值为,故答案为:【点睛】本题考查反函数的性质的应用,考查利用导函数研究函数的最值问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】

(1)根据中位线证明平面平面,即可证明MH∥平面;(2)以,,为,,轴建立空间直角坐标系,找到点的坐标代入公式即可计算二面角的余弦值.【详解】(1)证明:连接,∵,,分别为,,的中点,∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)连接,在和中,由余弦定理可得,,由与互补,,,可解得,于是,∴,,∵,直线与直线所成角为,∴,又,∴,即,∴平面,∴平面平面,∵为中点,,∴平面,如图所示,分别以,,为,,轴建立空间直角坐标系,则,,,,.设平面的法向量为,∴,即.令,则,,可得平面的一个法向量为.又平面的一个法向量为,∴,∴二面角的余弦值为.【点睛】此题考查线面平行,建系通过坐标求二面角等知识点,属于一般性题目.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用勾股定理结合条件求得和,利用椭圆的定义求得的值,进而可得出,则椭圆的标准方程可求;(Ⅱ)设点、,将直线的方程与椭圆的方程联立,利用韦达定理与弦长公式求出,利用几何法求得直线截圆所得弦长,可得出关于的函数表达式,利用不等式的性质可求得的取值范围.【详解】(Ⅰ)在椭圆上,,,,,,,又,,,,椭圆的标准方程为;(Ⅱ)设点、,联立消去,得,,则,,设圆的圆心到直线的距离为,则.,,,,的取值范围为.【点睛】本题考查椭圆方程的求解,同时也考查了椭圆中弦长之积的取值范围的求解,涉及韦达定理与弦长公式的应用,考查计算能力,属于中等题.19、(1);(2)【解析】

(1)分析可得必在椭圆上,不在椭圆上,代入即得解;(2)设直线PA,PB的倾斜角分别为,斜率为,可得.则,,利用均值不等式,即得解.【详解】(1)因为关于轴对称,所以必在椭圆上,∴不在椭圆上∴,,即.(2)设椭圆上的点(),设直线PA,PB的倾斜角分别为,斜率为又∴.,,(不妨设).故当且仅当,即时等号成立【点睛】本题考查了直线和椭圆综合,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.20、(1)(2)【解析】

(1)由公比表示出,由成等差数列可求得,从而数列的通项公式;(2)求(1)得,然后对和式两两并项后利用等差数列的前项和公式可求解.【详解】(1)∵是等比数列,且成等差数列∴,即∴,解得:或∵,∴∵∴(2)∵∴【点睛】本题考查等比数列的通项公式,考查并项求和法及等差数列的项和公式.本题求数列通项公式所用方法为基本量法,求和是用并项求和法.数列的求和除公式法外,还有错位相关法、裂项相消法、分组(并项)求和法等等.21、(1)(2)【解析】

(1)由直线可得椭圆右焦点的坐标为,由中点可得,且由斜率公式可得,由点在椭圆上,则,二者作差,进而代入整理可得,即可求解;(2)设直线,点到直线的距离为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论