2025高考数学一轮复习-8.3-圆的方程-专项训练(含答案)_第1页
2025高考数学一轮复习-8.3-圆的方程-专项训练(含答案)_第2页
2025高考数学一轮复习-8.3-圆的方程-专项训练(含答案)_第3页
2025高考数学一轮复习-8.3-圆的方程-专项训练(含答案)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025高考数学一轮复习-8.3-圆的方程-专项训练基础巩固练1.已知圆C的一条直径的两个端点的坐标分别是O(1,1)和A(3,3),则圆的标准方程是()A.(x-2)2+(y-2)2=1B.(x-2)2+(y+2)2=2C.(x-2)2+(y-2)2=2D.(x+2)2+(y+2)2=22.“方程x2+y2-4x+6y+a=0表示的图形是圆”是“a2-144≤0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2023扬州月考)若直线2x+y-1=0是圆x2+(y+a)2=1的一条对称轴,则a=()A.-1 B.1C.12 D.-4.设P(x,y)是圆C:(x-2)2+y2=1上任意一点,则(x-5)2+(y+4)2的最大值为()A.6 B.25 C.26 D.365.(多选题)过四点(0,0),(4,0),(-1,1),(4,2)中的三点的圆的方程为()A.(x-2)2+(y-1)2=5B.(x-2)2+(y-3)2=13C.x-4D.x-852+(y-6.(多选题)已知曲线C:Ax2+By2+Dx+Ey+F=0,下列说法正确的是()A.若A=B=1,则C是圆B.若A=B≠0,D2+E2-4AF>0,则C是圆C.若A=B=0,D2+E2>0,则C是直线D.若A≠0,B=0,则C是直线7.(2023连云港期中)已知圆C的圆心在y轴上,半径长为1,且过点(1,2),则圆C的标准方程为.

8.点P(4,-2)与圆x2+y2=4上任意一点连线的中点的轨迹方程是.

9.已知圆过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为43,求圆的方程.综合提升练10.(多选题)已知点A(-1,0),B(0,2),P是圆(x-1)2+y2=1上任意一点,若△PAB面积的最大值为a,最小值为b,则()A.a=2 B.a=2+5C.b=2-52 D.b=5211.过点M(2,2)的直线l与坐标轴的正半轴分别相交于A,B两点,O为坐标原点,若△OAB的面积为8,则△OAB外接圆的标准方程是()A.(x-2)2+(y-2)2=8B.(x-1)2+(y-2)2=8C.(x+2)2+(y-2)2=8D.(x-1)2+(y+2)2=812.若点C到A(-1,0),B(1,0)的距离之比为3,则点C到直线x-2y+8=0的距离的最小值为()A.25−3 BC.25 D.313.对任意实数m,圆x2+y2-3mx-6my+9m-2=0过定点,则定点坐标为.

14.如图,已知圆O:x2+y2=16,A,B是圆O上的两个动点,点P(2,0),则矩形PACB的顶点C的轨迹方程是.

15.在平面直角坐标系xOy中,曲线Γ:y=x2-mx+2m(m∈R)与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由.(2)求证:过A,B,C三点的圆过定点.创新应用练16.在平面几何中,将完全覆盖某平面图形且直径最小的圆,称为该平面图形的最小覆盖圆.如线段的最小覆盖圆就是以该线段为直径的圆,锐角三角形的最小覆盖圆就是该三角形的外接圆.若A(-2,0),B(2,0),C(0,4),则△ABC的最小覆盖圆的半径为()A.32 B.2 C.52 D参考答案1.C2.B3.A4.D5.AB6.BC7.x2+(y-2)2=18.(x-2)2+(y+1)2=19.解方法一:设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),①将P,Q的坐标分别代入①,得4D-令x=0,由①得y2+Ey+F=0.④由已知得|y1-y2|=43,其中y1,y2是方程④的两根.∴(y1-y2)2=(y1+y2)2-4y1y2=E2-4F=48.⑤解②③⑤联立成的方程组,得D故所求圆的方程为x2+y2-2x-12=0或x2+y2-10x-8y+4=0.方法二:求得PQ的中垂线方程为x-y-1=0.①∴所求圆的圆心C在直线x-y-1=0上,∴设其坐标为C(a,a-1),圆C的半径r=|CP|=(又圆C截y轴所得的线段长为43,而圆心C到y轴的距离为|a|,∴r2=a2+4322,代入并整理得a2-6a+5=0,解得a1=1,a2=5.∴当圆心为(1,0)时,半径r1=13;当圆心为(5,4)时,半径r2=37故所求圆的方程为(x-1)2+y2=13或(x-5)2+(y-4)2=37.10.BC11.A12.A13.(1,1)或15,7514.x215.解由曲线Γ:y=x2-mx+2m(m∈R),令y=0,得x2-mx+2m=0.设A(x1,0),B(x2,0),可得Δ=m2-8m>0,则m<0或m>8,x1+x2=m,x1x2=2m.令x=0,得y=2m,即C(0,2m).(1)若存在以AB为直径的圆过点C,则AC·BC=0,得x1x2+4m2=0,即2m+4m2=0,所以m=0(舍去)或此时C(0,-1),AB的中点,即圆心为M-14,0,半径r=|CM|=174,故所求圆的方程为(2)设过A,B两点的圆的方程为x2+y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论