版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖北省天门经济开发区中学中考猜题数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是()A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB2.如图,PA切⊙O于点A,PO交⊙O于点B,点C是⊙O优弧弧AB上一点,连接AC、BC,如果∠P=∠C,⊙O的半径为1,则劣弧弧AB的长为()A.π B.π C.π D.π3.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A. B. C. D.4.若=1,则符合条件的m有()A.1个 B.2个 C.3个 D.4个5.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定6.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=47.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数 B.平均数 C.中位数 D.方差8.一组数据3、2、1、2、2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.29.若,则括号内的数是A. B. C.2 D.810.如图,在平面直角坐标系中,是反比例函数的图像上一点,过点做轴于点,若的面积为2,则的值是()A.-2 B.2 C.-4 D.4二、填空题(共7小题,每小题3分,满分21分)11.若y=,则x+y=.12.将一副三角板如图放置,若,则的大小为______.13.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.14.在Rt△ABC中,∠C=90°,sinA=,那么cosA=________.15.如图,在△ACB中,∠ACB=90°,点D为AB的中点,将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.若AC=6,BC=8,则DB1的长为________.16.两地相距的路程为240千米,甲、乙两车沿同一线路从地出发到地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达地.甲、乙两车相距的路程(千米)与甲车行驶时间(小时)之间的关系如图所示,求乙车修好时,甲车距地还有____________千米.17.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.三、解答题(共7小题,满分69分)18.(10分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大,店主决定将乙种水果降价1元促销,降价后30元可购买乙种水果的斤数是原来购买乙种水果斤数的1.5倍.(1)求降价后乙种水果的售价是多少元/斤?(2)根据销售情况,水果店用不多于900元的资金再次购进两种水果共500斤,甲种水果进价为2元/斤,乙种水果进价为1.5元/斤,问至少购进乙种水果多少斤?19.(5分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.20.(8分)某初中学校组织400位同学参加义务植树活动,每人植树的棵数在5至10之间,甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表分别为表1和表2:表1:甲调查九年级30位同学植树情况统计表(单位:棵)每人植树情况78910人数36156频率0.10.20.50.2表2:乙调查三个年级各10位同学植树情况统计表(单位:棵)每人植树情况678910人数363116频率0.10.20.10.40.2根据以上材料回答下列问题:(1)表1中30位同学植树情况的中位数是棵;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是,正确的数据应该是;(3)指出哪位同学所抽取的样本能更好反映此次植树活动情况,并用该样本估计本次活动400位同学一共植树多少棵?21.(10分)如图,在平行四边形ABCD中,AD>AB.(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.22.(10分)已知线段a及如图形状的图案.(1)用直尺和圆规作出图中的图案,要求所作图案中圆的半径为a(保留作图痕迹)(2)当a=6时,求图案中阴影部分正六边形的面积.23.(12分)(1)计算:(﹣2)2﹣+(+1)2﹣4cos60°;(2)化简:÷(1﹣)24.(14分)观察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是,位置关系是.探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
根据三角形中位线定理判断即可.【详解】∵AD为△ABC的中线,点E为AC边的中点,
∴DC=BC,DE=AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=S△ABC,C一定成立;DE∥AB,D一定成立;故选A.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.2、A【解析】
利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=∠O,加上∠P=∠C可计算写出∠O=60°,然后根据弧长公式计算劣弧的长.【详解】解:∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的长=.故选:A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式.3、C【解析】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=,故选C.【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.4、C【解析】
根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.【详解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.5、A【解析】
直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE,如图所示:
∵∠ACB=∠AEB,
∠AEB>∠D,
∴∠C>∠D.
故选:A.【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.6、D【解析】
由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.【详解】解:∵△OAB绕O点逆时针旋转60°得到△OCD,
∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;
则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;
∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.
故选D.【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.7、D【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。【详解】由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.故选D.8、B【解析】试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.故选B.9、C【解析】
根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【详解】解:,
故选:C.【点睛】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.10、C【解析】
根据反比例函数k的几何意义,求出k的值即可解决问题【详解】解:∵过点P作PQ⊥x轴于点Q,△OPQ的面积为2,
∴||=2,
∵k<0,
∴k=-1.
故选:C.【点睛】本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.二、填空题(共7小题,每小题3分,满分21分)11、1.【解析】试题解析:∵原二次根式有意义,∴x-3≥0,3-x≥0,∴x=3,y=4,∴x+y=1.考点:二次根式有意义的条件.12、160°【解析】试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为160°.考点:余角和补角.13、(7+6)【解析】
过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.【详解】解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,
∵坝顶部宽为2m,坝高为6m,
∴DC=EF=2m,EC=DF=6m,
∵α=30°,
∴BE=(m),
∵背水坡的坡比为1.2:1,
∴,
解得:AF=5(m),
则AB=AF+EF+BE=5+2+6=(7+6)m,
故答案为(7+6)m.【点睛】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.14、【解析】∵Rt△ABC中,∠C=90°,∴sinA=,∵sinA=,∴c=2a,∴b=,∴cosA=,故答案为.15、2【解析】
根据勾股定理可以得出AB的长度,从而得知CD的长度,再根据旋转的性质可知BC=B1C,从而可以得出答案.【详解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴,∵点D为AB的中点,∴,∵将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案为:2.【点睛】本题考查的是勾股定理、直角三角形斜边中点的性质和旋转的性质,能够根据勾股定理求出AB的长是解题的关键.16、90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B地,设乙车出故障前走了t1小时,修好后走了t2小时,根据等量关系甲车用了小时行驶了全程,乙车行驶的路程为60t1+50t2=240,列方程组求出t2,再根据甲车的速度即可知乙车修好时甲车距B地的路程.【详解】甲车先行40分钟(),所行路程为30千米,因此甲车的速度为(千米/时),设乙车的初始速度为V乙,则有,解得:(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t1小时,修好后走了t2小时,则有,解得:,45×2=90(千米),故答案为90.【点评】本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.17、【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】67000000000的小数点向左移动10位得到6.7,所以67000000000用科学记数法表示为,故答案为:.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题(共7小题,满分69分)18、(1)降价后乙种水果的售价是2元/斤;(2)至少购进乙种水果200斤.【解析】
(1)设降价后乙种水果的售价是x元,30元可购买乙种水果的斤数是,原来购买乙种水果斤数是,根据题意即可列出等式;(2)设至少购进乙种水果y斤,甲种水果(500﹣y)斤,有甲乙的单价,总斤数≤900即可列出不等式,求解即可.【详解】解:(1)设降价后乙种水果的售价是x元,根据题意可得:,解得:x=2,经检验x=2是原方程的解,答:降价后乙种水果的售价是2元/斤;(2)设至少购进乙种水果y斤,根据题意可得:2(500﹣y)+1.5y≤900,解得:y≥200,答:至少购进乙种水果200斤.【点睛】本题考查了分式的应用和一元一次不等式的应用,根据题意列出式子是解题的关键19、(1)证明见解析;(2)CE=1.【解析】
(1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.
(2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长.【详解】(1)证明:如图,连接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵∠ACB=90°,
∴∠OEA=∠ACB=90°,
∴AC是⊙O的切线.
(2)解:过O作OH⊥BF,
∴BH=BF=3,四边形OHCE是矩形,
∴CE=OH,
在Rt△OBH中,BH=3,OB=5,
∴OH==1,
∴CE=1.【点睛】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.20、(1)9;(2)11,12;(3)3360棵【解析】
(1)30位同学的植树量中第15个、16个数都是9,即可得到植树的中位数;(2)根据频率相加得1确定频率正确,计算频数即可确定错误的数据是11,正确的硬是12;(3)样本数据应体现机会均等由此得到乙同学所抽取的样本更好,再根据部分计算总体的公式即可得到答案.【详解】(1)表1中30位同学植树情况的中位数是9棵,故答案为:9;(2)表2的最后两列中,错误的数据是11,正确的数据应该是30×0.4=12;故答案为:11,12;(3)乙同学所抽取的样本能更好反映此次植树活动情况,(3×6+6×7+3×8+12×9+6×10)÷30×400=3360(棵),答:本次活动400位同学一共植树3360棵.【点睛】此题考查统计的计算,掌握中位数的计算方法,部分的频数的计算方法,依据样本计算总体的方法是解题的关键.21、解:(1)图见解析;(2)证明见解析.【解析】
(1)根据角平分线的作法作出∠ABC的平分线即可.(2)首先根据角平分线的性质以及平行线的性质得出∠ABE=∠AEB,进而得出△ABO≌△FBO,进而利用AF⊥BE,BO=EO,AO=FO,得出即可.【详解】解:(1)如图所示:(2)证明:∵BE平分∠ABC,∴∠ABE=∠EAF.∵平行四边形ABCD中,AD//BC∴∠EBF=∠AEB,∴∠ABE=∠AEB.∴AB=AE.∵AO⊥BE,∴BO=EO.∵在△ABO和△FBO中,∠ABO=∠FBO,BO=EO,∠AOB=∠FOB,∴△ABO≌△FBO(ASA).∴AO=FO.∵AF⊥BE,BO=EO,AO=FO.∴四边形ABFE为菱形.22、(1)如图所示见解析,(2)当半径为6时,该正六边形的面积为【解析】试题分析:(1)先画一半径为a的圆,再作所画圆的六等分点,如图所示,连接所得六等分点,作出两个等边三角形即可;(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,由已知条件先求出AB和OE的长,再求出CD的长,即可求得△OCD的面积,这样即可由S阴影=6S△OCD求出阴影部分的面积了.试题解析:(1)所作图形如下图所示:(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,则由题意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三边三角形,∴∠ABO=30°,BC=OC=CD=AD,∴BE=OB·cos30°=,OE=3,∴AB=,∴CD=,∴S△OCD=,∴S阴影=6S△OCD=.23、(1)5(2)【解析】
(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算.【详解】解:(1)原式=4﹣2+2+2+1﹣4×=7﹣2=5;(2)原式=÷=•=.【点睛】本题考核知识点:实数运算,分式混合运算.解题关键点:掌握相关运算法则.24、(1)CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由见解析;(3).【解析】分析:(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版劳务加工承包合同范本
- 2024年艺术品买卖合同赔偿条例
- 2025年度新型城镇化租赁住房建设合同4篇
- 2025年度智能家居项目瓷砖材料供应合同4篇
- 2025年度体育场馆搭棚施工及维护管理合同4篇
- 2024版镍氢电池产品销售合同
- 2025年度学校食堂及餐饮服务承包合同范本4篇
- 2025年度新能源汽车购置合同示范文本4篇
- 2025年度特色农家乐经营权转让合同范本3篇
- 2025年度智能窗帘控制系统研发与市场推广合同4篇
- 特种设备行业团队建设工作方案
- 眼内炎患者护理查房课件
- 肯德基经营策略分析报告总结
- 买卖合同签订和履行风险控制
- 中央空调现场施工技术总结(附图)
- 水质-浊度的测定原始记录
- 数字美的智慧工业白皮书-2023.09
- -安规知识培训
- 2021-2022学年四川省成都市武侯区部编版四年级上册期末考试语文试卷(解析版)
- 污水处理厂设备安装施工方案
- 噪声监测记录表
评论
0/150
提交评论