版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数f(x)=eb﹣x﹣ex﹣b+c(b,c均为常数)的图象关于点(2,1)对称,则f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.42.函数在上单调递减的充要条件是()A. B. C. D.3.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为()A. B. C. D.4.一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为()A. B. C. D.5.已知函数满足,当时,,则()A.或 B.或C.或 D.或6.已知复数,(为虚数单位),若为纯虚数,则()A. B.2 C. D.7.在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:①;②;③平面平面:④异面直线与所成角为其中正确命题的个数为()A.1 B.2 C.3 D.48.是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是()A. B.C. D.9.集合,,则=()A. B.C. D.10.函数的图象大致为()A. B.C. D.11.如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是()A.等于4 B.大于4 C.小于4 D.不确定12.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.边长为2的菱形中,与交于点O,E是线段的中点,的延长线与相交于点F,若,则______.14.如图,已知,,为的中点,为以为直径的圆上一动点,则的最小值是_____.15.三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有________种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).16.曲线在点处的切线方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知x∈R,设,,记函数.(1)求函数取最小值时x的取值范围;(2)设△ABC的角A,B,C所对的边分别为a,b,c,若,,求△ABC的面积S的最大值.18.(12分)已知函数,.(1)当时,讨论函数的零点个数;(2)若在上单调递增,且求c的最大值.19.(12分)在中,角、、所对的边分别为、、,角、、的度数成等差数列,.(1)若,求的值;(2)求的最大值.20.(12分)在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(1)求的长;(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.21.(12分)已知函数,其中.(1)讨论函数的零点个数;(2)求证:.22.(10分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE;(2)AM⊥平面BDF.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
根据对称性即可求出答案.【详解】解:∵点(5,f(5))与点(﹣1,f(﹣1))满足(5﹣1)÷2=2,故它们关于点(2,1)对称,所以f(5)+f(﹣1)=2,故选:C.【点睛】本题主要考查函数的对称性的应用,属于中档题.2.C【解析】
先求导函数,函数在上单调递减则恒成立,对导函数不等式换元成二次函数,结合二次函数的性质和图象,列不等式组求解可得.【详解】依题意,,令,则,故在上恒成立;结合图象可知,,解得故.故选:C.【点睛】本题考查求三角函数单调区间.求三角函数单调区间的两种方法:(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角(或),利用基本三角函数的单调性列不等式求解;(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.3.B【解析】
根据题意表示出各位上的数字所对应的算筹即可得答案.【详解】解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的.故选:.【点睛】本题主要考查学生的合情推理与演绎推理,属于基础题.4.B【解析】
根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心.【详解】如图所示:因为正四棱锥底边边长为,高为,所以,到的距离为,同理到的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【点睛】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.5.C【解析】
简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【详解】由,可知函数关于对称当时,,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,,考验分析能力,属中档题.6.C【解析】
把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可.【详解】∵,∴,∵为纯虚数,∴,解得.故选C.【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.7.B【解析】
设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出①的正误;判断是的中点推出②正的误;利用直线与平面垂直推出平面与平面垂直推出③正的误;建立空间直角坐标系求出异面直线与所成角判断④的正误.【详解】解:不妨设棱长为:2,对于①连结,则,即与不垂直,又,①不正确;对于②,连结,,在中,,而,是的中点,所以,②正确;对于③由②可知,在中,,连结,易知,而在中,,,即,又,面,平面平面,③正确;以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系;,,,,,;,;异面直线与所成角为,,故.④不正确.故选:.【点睛】本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力.8.D【解析】
根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.9.C【解析】
先化简集合A,B,结合并集计算方法,求解,即可.【详解】解得集合,所以,故选C.【点睛】本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小.10.A【解析】
根据函数的奇偶性和单调性,排除错误选项,从而得出正确选项.【详解】因为,所以是偶函数,排除C和D.当时,,,令,得,即在上递减;令,得,即在上递增.所以在处取得极小值,排除B.故选:A【点睛】本小题主要考查函数图像的识别,考查利用导数研究函数的单调区间和极值,属于中档题.11.A【解析】
利用的坐标为,设直线的方程为,然后联立方程得,最后利用韦达定理求解即可【详解】据题意,得点的坐标为.设直线的方程为,点,的坐标分别为,.讨论:当时,;当时,据,得,所以,所以.【点睛】本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方程,属于基础题12.A【解析】
由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以的周期为,则,所以,由正弦函数和正切函数图象可知正确.故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
取基向量,,然后根据三点共线以及向量加减法运算法则将,表示为基向量后再相乘可得.【详解】如图:设,又,且存在实数使得,,,,,,故答案为:.【点睛】本题考查了平面向量数量积的性质及其运算,属中档题.14.【解析】
建立合适的直角坐标系,求出相关点的坐标,进而可得的坐标表示,利用平面向量数量积的坐标表示求出的表达式,求出其最小值即可.【详解】建立直角坐标系如图所示:则点,,,设点,所以,由平面向量数量积的坐标表示可得,,其中,因为,所以的最小值为.故答案为:【点睛】本题考查平面向量数量积的坐标表示和利用辅助角公式求最值;考查数形结合思想和转化与化归能力、运算求解能力;建立直角坐标系,把表示为关于角的三角函数,利用辅助角公式求最值是求解本题的关键;属于中档题.15.192【解析】
根据题意,分步进行分析:①,在三对父子中任选1对,安排在相邻的位置上,②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,由分步计数原理计算可得答案.【详解】根据题意,分步进行分析:①,在三对父子中任选1对,有3种选法,由图可得相邻的位置有4种情况,将选出的1对父子安排在相邻的位置,有种安排方法;②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,有种安排方法,则有且仅有一对父子是相邻而坐的坐法种;故答案为:【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.16.【解析】
对函数求导,得出在处的一阶导数值,即得出所求切线的斜率,再运用直线的点斜式求出切线的方程.【详解】令,,所以,又,所求切线方程为,即.故答案为:.【点睛】本题考查运用函数的导函数求函数在切点处的切线方程,关键在于求出在切点处的导函数值就是切线的斜率,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】
(1)先根据向量的数量积的运算,以及二倍角公式和两角和的正弦公式化简得到f(x)=,再根据正弦函数的性质即可求出答案;(2)先求出C的大小,再根据余弦定理和基本不等式,即可求出,根据三角形的面积公式即可求出答案.【详解】(1).令,k∈Z,即时,,取最小值,所以,所求的取值集合是;(2)由,得,因为,所以,所以,.在中,由余弦定理,得,即,当且仅当时取等号,所以的面积,因此的面积的最大值为.【点睛】本题考查了向量的数量积的运算和二倍角公式,两角和的正弦公式,余弦定理和基本不等式,三角形的面积公式,属于中档题.18.(1)见解析(2)2【解析】
(1)将代入可得,令,则,设,则转化问题为与的交点问题,利用导函数判断的图象,即可求解;(2)由题可得在上恒成立,设,利用导函数可得,则,即,再设,利用导函数求得的最小值,则,进而求解.【详解】(1)当时,,定义域为,由可得,令,则,由,得;由,得,所以在上单调递增,在上单调递减,则的最大值为,且当时,;当时,,由此作出函数的大致图象,如图所示.由图可知,当时,直线和函数的图象有两个交点,即函数有两个零点;当或,即或时,直线和函数的图象有一个交点,即函数有一个零点;当即时,直线与函数的象没有交点,即函数无零点.(2)因为在上单调递增,即在上恒成立,设,则,①若,则,则在上单调递减,显然,在上不恒成立;②若,则,在上单调递减,当时,,故,单调递减,不符合题意;③若,当时,,单调递减,当时,,单调递增,所以,由,得,设,则,当时,,单调递减;当时,,单调递增,所以,所以,又,所以,即c的最大值为2.【点睛】本题考查利用导函数研究函数的零点问题,考查利用导函数求最值,考查运算能力与分类讨论思想.19.(1);(2).【解析】
(1)由角的度数成等差数列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以当,即时,.【方法点睛】解三角形问题基本思想方法:从条件出发,利用正弦定理(或余弦定理)进行代换、转化.逐步化为纯粹的边与边或角与角的关系,即考虑如下两条途径:①统一成角进行判断,常用正弦定理及三角恒等变换;②统一成边进行判断,常用余弦定理、面积公式等.20.(1);(2).【解析】
(1)将直线的参数方程化为直角坐标方程,由点到直线距离公式可求得圆心到直线距离,结合垂径定理即可求得的长;(2)将的极坐标化为直角坐标,将直线方程与圆的方程联立,求得直线与圆的两个交点坐标,由中点坐标公式求得的坐标,再根据两点间距离公式即可求得.【详解】(1)直线的参数方程为(为参数),化为直角坐标方程为,即直线与曲线交于两点.则圆心坐标为,半径为1,则由点到直线距离公式可知,所以.(2)点的极坐标为,化为直角坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024个人民间借款合同范本格式
- 2024年度家具搬运与安装合同
- 职业危害课件教学课件
- 2024年建筑工程抹灰班组承包合同
- 2024年度财务咨询与审计服务协议
- 烟花创意课件教学课件
- 2024健身器材代销合同
- 2024年度汽车销售代理协议
- 2024年度环保项目工程咨询服务合同
- 2024品牌授权与加盟合作协议
- 形势与政策(吉林大学)智慧树知到答案2024年吉林大学
- 2024年“正大杯”市场调查与分析竞赛考试题库及答案
- 人教版九年级英语上册阅读理解10篇(含答案)
- 《思想道德与法治》课件第四章明确价值要求践行价值准则第三节积极践行社会主义核心价值观
- GB 39800.1-2020个体防护装备配备规范第1部分:总则
- 水泥搅拌桩机械进场安装验收记录表
- 高一物理的必修的一期中考试试卷解析告
- 四年级英语上册Unit4第四课时教案人教PEP标准版
- 九大类危险品英文解释与图标
- 小学科学(16年级)课程标准解读
- 尼龙青岛交流
评论
0/150
提交评论