2023届重庆市八中八年级数学第一学期期末检测试题含解析_第1页
2023届重庆市八中八年级数学第一学期期末检测试题含解析_第2页
2023届重庆市八中八年级数学第一学期期末检测试题含解析_第3页
2023届重庆市八中八年级数学第一学期期末检测试题含解析_第4页
2023届重庆市八中八年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,中,的垂直平分线与的角平分线相交于点,垂足为点,若,则()A. B. C. D.不能确定2.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,33.若,,则的值为()A. B. C. D.4.下面四个交通标志图中为轴对称图形的是()A. B. C. D.5.下列命题是真命题的是()A.如果两角是同位角,那么这两角一定相等B.同角或等角的余角相等C.三角形的一个外角大于任何一个内角D.如果a2=b2,那么a=b6.给出下列数:,其中无理数有()A.1个 B.2个 C.3个 D.4个7.下列式子正确的是A. B. C. D.8.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1 B.0.15C.0.25 D.0.39.如图,,,,则的长度为()A. B. C. D.10.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=40°,则∠2=()A.40° B.50° C.60° D.70°二、填空题(每小题3分,共24分)11.等腰三角形的一个外角度数为100°,则顶角度数为_____.12.如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为_____.13.如图,把平面内一条数轴x绕点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:已知点P是平面斜坐标系中任意一点,过点P作y轴的平行线交x轴于点A,过点P作x轴的平行线交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标.在平面斜坐标系中,若θ=45°,点P的斜坐标为(1,2),点G的斜坐标为(7,﹣2),连接PG,则线段PG的长度是_____.14.如图,在△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.给出下列结论:①∠EAB=∠FAC;②AF=AC;③∠C=∠EFA;④AD=AC.其中正确的结论是_____(填序号).15.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是_____.16.如图所示,一只蚂蚁从点沿数轴向右直爬2个单位到达点,点表示,设点所表示的数为,则的值是__________.17.如图,点D、E分别在线段AB、AC上,且AD=AE,若由SAS判定,则需要添加的一个条件是_________.18.如图,中,是的中点,则________________度.三、解答题(共66分)19.(10分)已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于E点.(1)求∠EDA的度数;(2)AB=10,AC=8,DE=3,求S△ABC.20.(6分)某射击队准备从甲、乙两名队员中选取一名队员代表该队参加比赛,特为甲、乙两名队员举行了一次选拔赛,要求这两名队员各射击10次.比赛结束后,根据比赛成绩情况,将甲、乙两名队员的比赛成绩制成了如下的统计表:甲队员成绩统计表成绩(环)18910次数(次)5122乙队员成绩统计表成绩(环)18910次数(次)4321(1)经过整理,得到的分析数据如表,求表中的,,的值.队员平均数中位数众数方差甲81.51乙11(2)根据甲、乙两名队员的成绩情况,该射击队准备选派乙参加比赛,请你写出一条射击队选派乙的理由.21.(6分)已知:如图,△ABC中,P、Q两点分别是边AB和AC的垂直平分线与BC的交点,连结AP和AQ,且BP=PQ=QC.求∠C的度数.证明:∵P、Q两点分别是边AB和AC的垂直平分线与BC的交点,∴PA=,QC=QA.∵BP=PQ=QC,∴在△APQ中,PQ=(等量代换)∴△APQ是三角形.∴∠AQP=60°,∵在△AQC中,QC=QA,∴∠C=∠.又∵∠AQP是△AQC的外角,∴∠AQP=∠+∠=60°.(三角形的一个外角等于与它不相邻的两个内角的和)∴∠C=.22.(8分)已知点D为内部(包括边界但非A、B、C)上的一点.(1)若点D在边AC上,如图①,求证:AB+AC>BD+DC(2)若点D在内,如图②,求证:AB+AC>BD+DC(3)若点D在内,连结DA、DB、DC,如图③求证:(AB+BC+AC)<DA+DB+DC<AB+BC+AC23.(8分)随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.某快递中转站平均每天需要分拣10万件快件,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作(每天工作时间为8小时).24.(8分)如图,在平面直角坐标系中,一次函数与轴、轴分别交于点、两点,与正比例函数交于点.(1)求一次函数和正比例函数的表达式;(2)若点为直线上的一个动点(点不与点重合),点在一次函数的图象上,轴,当时,求点的坐标.25.(10分)一辆汽车开往距离出发地的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.2倍匀速行驶,并比原计划提前半小时到达目的地.求汽车前一小时的行驶速度.26.(10分)如图,在▱ABCD中,E、F分别是BC、AD边上的点,且∠1=∠1.求证:四边形AECF是平行四边形.

参考答案一、选择题(每小题3分,共30分)1、B【分析】首先过点D作DF⊥AB于E,DF⊥AC于F,易证得Rt△DEB≌Rt△DFC(HL),即可得∠BDC=∠EDF,又由∠EAF+∠EDF=180°,即可求得答案.【详解】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180°,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故选:B.【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与转化思想的应用.2、B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.3、C【分析】将原式进行变形,,然后利用完全平方公式的变形求得a-b的值,从而求解.【详解】解:∵∴又∵∴∴∴故选:C.【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.4、D【分析】根据“一个图形沿着某条直线对折,直线两旁的部分能够互相重合”求解.【详解】A、不是轴对称图形,故本选项错误;

B、不是轴对称图形,故本选项错误;

C、不是轴对称图形,故本选项错误;

D、是轴对称图形,故本选项正确.

故选D.【点睛】本题考查的是轴对称图形,掌握轴对称图形的定义是关键.5、B【分析】根据平行线的性质、余角的概念、三角形的外角性质、有理数的乘方法则判断.【详解】解:A、两直线平行,同位角相等,∴如果两角是同位角,那么这两角一定相等是假命题;B、同角或等角的余角相等,是真命题;C、三角形的一个外角大于任何一个与它不相邻的内角,∴三角形的一个外角大于任何一个内角,是假命题;D、(﹣1)2=12,﹣1≠1,∴如果a2=b2,那么a=b,是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6、B【分析】根据无理数的定义进行判断即可.【详解】根据无理数的定义:无理数是无限不循环小数,不能表示为两个整数的比.由此可得,中,是无理数故答案为:B.【点睛】本题主要考查了无理数的基本概念,掌握无理数的性质以及判断方法是解题的关键.7、A【解析】分析:根据=|a|分别对A、B、C进行判断;根据二次根式的定义可对D进行判断.详解:A、=|-7|=7,所以A选项正确;B、=|-7|=7,所以B选项错误;C、=7,所以C选项错误;D、没有意义,所以D选项错误.故选A.点睛:本题考查了二次根式的性质与化简:=|a|.也考查了二次根式的定义.8、D【解析】∵根据频率分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.1.9、B【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可.【详解】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3(cm),故选:B.【点睛】本题考查全等三角形的性质,线段的和差定义等知识,解题的关键是熟练掌握基本知识.10、B【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.【详解】解:∵直尺对边互相平行,∴∠3=∠1=40°,∴∠2=180°−40°−90°=50°.故选:B.【点睛】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.二、填空题(每小题3分,共24分)11、或【解析】解:若顶角的外角是,则顶角是.若底角的外角是,则底角是,顶角是.故答案为80°或20°.12、2或4【解析】先求出点C坐标,然后分为两种情况,画出图形,根据等腰三角形的性质求出即可.【详解】∵由,得,∴C(2,2);如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2;如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为2或4.【点睛】本题考查了一次函数与二元一次方程组、等腰直角三角形等知识,综合性比较强,熟练掌握相关知识、运用分类讨论以及数形结合思想是解题的关键.13、2【分析】如图,作PA∥y轴交X轴于A,PH⊥x轴于H.GM∥y轴交x轴于M,连接PG交x轴于N,先证明△ANP≌△MNG(AAS),再根据勾股定理求出PN的值,即可得到线段PG的长度.【详解】如图,作PA∥y轴交X轴于A,PH⊥x轴于H.GM∥y轴交x轴于M,连接PG交x轴于N.∵P(1,2),G(1.﹣2),∴OA=1,PA=GM=2,OM=1,AM=6,∵PA∥GM,∴∠PAN=∠GMN,∵∠ANP=∠MNG,∴△ANP≌△MNG(AAS),∴AN=MN=3,PN=NG,∵∠PAH=45°,∴PH=AH=2,∴HN=1,∴,∴PG=2PN=2.故答案为2.【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.14、①②③【解析】解:在△AEF和△ABC中,∵AB=AE,∠B=∠E,BC=EF,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,∠C=∠EFA,∴∠EAB=∠FAC,故①②③正确,④错误;所以答案为:①②③.点睛:本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解决问题的关键.15、(2n﹣1,2n﹣1).【解析】解:∵y=x-1与x轴交于点A1,

∴A1点坐标(1,0),

∵四边形A1B1C1O是正方形,

∴B1坐标(1,1),

∵C1A2∥x轴,

∴A2坐标(2,1),

∵四边形A2B2C2C1是正方形,

∴B2坐标(2,3),

∵C2A3∥x轴,

∴A3坐标(4,3),

∵四边形A3B3C3C2是正方形,

∴B3(4,7),

∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,

∴Bn坐标(2n-1,2n-1).

故答案为(2n-1,2n-1).16、【分析】先根据数轴上点的平移的性质求得m,将m的值代入,根据绝对值的性质()进行化简即可.【详解】解:由题意知,A点和B点的距离为2,A的坐标为,∴B点的坐标为;∴.故答案为:.【点睛】本题考查实数与数轴,化简绝对值,无理数的估算.能估算的正负,并且根据绝对值的意义化简是解决此题的关键.17、【分析】题目中已给出一组对边和一个公共角,再找到公共角的另一组对边即可.【详解】在和中,故答案为:.【点睛】本题主要考查用SAS证明三角形全等,掌握全等三角形的判定方法是解题的关键.18、62【分析】根据直角三角形斜边上的中线等于斜边的一半可知,根据等腰三角形的性质可知,进而即可得解.【详解】∵在中,D是的中点∴∴是等腰三角形∴∵∴∵∴故答案为:62.【点睛】本题主要考查了直角三角形斜边上中线的性质,以及等腰三角形性质等相关知识,熟练掌握三角形的相关知识是解决本题的关键.三、解答题(共66分)19、(1)60°;(2)1.【解析】(1)先求出∠BAC=60°,再用AD是△ABC的角平分线求出∠BAD,再根据垂直,即可求解;(2)过D作DF⊥AC于F,三角形ABC的面积为三角形ABD和三角形ACD的和即可求解.【详解】解:(1)∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=∠BAC=×60°=30°,∵DE⊥AB,∴∠DEA=90°,∴∠EDA=180°﹣∠BAD﹣∠DEA=180°﹣30°﹣90°=60°;(2)如图,过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=3,又∵AB=10,AC=8,∴S△ABC=×AB×DE+×AC×DF=×10×3+×8×3=1.【点睛】本题考查的是三角形,熟练掌握三角形的性质是解题的关键.20、(2)a=8,b=8,c=2;(2)由于乙的中位数大于甲的中位数,根据中位数的意义,乙的高分次数比甲多【分析】(2)根据加权平均数的公式、中位数的定义、方差的公式计算可得;(2)对比平均数、中位数、众数、方差,再根据中位数的意义得出选派乙的依据.【详解】解:(2)乙的平均数为:,乙的中位数为:,甲的方差为:,故a=8,b=8,c=2.(2)由于乙的中位数大于甲的中位数,根据中位数的意义,乙大于等于8分的次数比甲多.【点睛】本题考查了数据的集中趋势,涉及平均数、中位数、众数、方差等计算,解题的关键是理解平均数、中位数、众数、方差的实际意义.21、BP,垂直平分线上任意一点,到线段两端点的距离相等,PA=QA,等边,QAC,C,QAC,30°.【分析】根据线段垂直平分线的性质可得PA=BP,QC=QA,再根据等量关系可得PQ=PA=QA,可得△APQ是等边三角形,根据等边三角形的性质可得∠AQP=60°,再根据三角形三角形外角的性质和等腰的性质可求∠C的度数.【详解】解:证明:∵P、Q两点分别是边AB和AC的垂直平分线与BC的交点,∴PA=BP,QC=QA.(垂直平分线上任意一点,到线段两端点的距离相等)∵BP=PQ=QC,∴在△APQ中,PQ=PA=QA(等量代换)∴△APQ是等边三角形.∴∠AQP=60°,∵在△AQC中,QC=QA,∴∠C=∠QAC.又∵∠AQP是△AQC的外角,∴∠AQP=∠C+∠QAC=60°.(三角形的一个外角等于与它不相邻的两个内角的和)∴∠C=30°.故答案为:BP,(垂直平分线上任意一点,到线段两端点的距离相等),PA=QA,等边,QAC,C,QAC,30°.【点睛】考查了线段垂直平分线的性质,等边三角形的判定与性质,三角形外角的性质和等腰三角形的性质,关键是得到△APQ是等边三角形.22、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据三角形的三边关系和不等式的基本性质即可得出结论;(2)延长BD交AC于E,根据三角形的三边关系和不等式的基本性质即可得出结论;(3)根据三角形的三边关系和不等式的基本性质即可得出结论.【详解】解:(1)∵AB+AD>BD∴AB+AD+DC>BD+DC∴AB+AC>BD+DC(2)延长BD交AC于E∵AB+AE>BD+DE①DE+EC>DC②∴由①+②,得AB+AE+DE+EC>BD+DE+DC整理,得AB+AC>BD+DC(3)∵AD+BD>AB①BD+DC>BC②AD+DC>AC③∴把①+②+③得AD+BD+BD+DC+AD+DC>AB+BC+AC整理,得AD+DB+DC>(AB+BC+AC)又∵由上面(2)式得到:DB+DA<AC+BC①DB+DC<AB+AC②DA+DC<AB+BC③∴把①+②+③得DB+DA+DB+DC+DA+DC<AC+BC+AB+AC+AB+BC整理得DA+DB+DC<AB+BC+AC∴(AB+BC+AC)<DA+DB+DC<AB+BC+AC【点睛】此题考查的是比较线段的和之间的大小关系,掌握三角形的三边关系和不等式的基本性质是解决此题的关键.23、每天只需要安排6名工人就可以完成分拣工作.【分析】设用传统方式每人每小时可分拣x件,则用智能分拣设备后每人每小时可分拣25x件,根据工作时间=工作总量÷工作效率结合5人用此设备分拣8000件快件的时间比20人用传统方式分拣同样数量的快件节省4小时,即可得出关于x的分式方程,解之经检验后即可得出x的值,再利用需要人数=工作总量÷每人每天用智能分拣设备后的工作量,即可求出结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论