2023届浙江省温州市瑞安市集云实验学校数学八年级第一学期期末学业质量监测试题含解析_第1页
2023届浙江省温州市瑞安市集云实验学校数学八年级第一学期期末学业质量监测试题含解析_第2页
2023届浙江省温州市瑞安市集云实验学校数学八年级第一学期期末学业质量监测试题含解析_第3页
2023届浙江省温州市瑞安市集云实验学校数学八年级第一学期期末学业质量监测试题含解析_第4页
2023届浙江省温州市瑞安市集云实验学校数学八年级第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.点A(-3,4)所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列各数,是无理数的是()A. B. C. D.3.如图,是直角三角形,,点、分别在、上,且.下列结论:①,②,③当时,是等边三角形,④当时,,其中正确结论的个数有()A.1个 B.2个 C.3个 D.4个4.估算在()A.5与6之间 B.6与7之间 C.7与8之间 D.8与9之间5.4的算术平方根是()A.4 B.2 C. D.6.将一副直角三角板如图放置,使两直角边重合,则∠α的度数为()A.75° B.105° C.135° D.165°7.若成立,在下列不等式成立的是()A. B. C. D.8.如图,,,垂足分别是,,且,若利用“”证明,则需添加的条件是()A. B.C. D.9.如图,在中,,,垂直平分,交于点若,则等于()A. B. C. D.10.解分式方程时,去分母化为一元一次方程,正确的是()A.x+2=3 B.x﹣2=3 C.x﹣2=3(2x﹣1) D.x+2=3(2x﹣1)二、填空题(每小题3分,共24分)11.若时,则的值是____________________.12.计算10ab3÷5ab的结果是_____.13.已知等腰三角形一腰上的高与另一腰的夹角为50°,则等腰三角形的顶角度数为_________.14.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边长分别为6m和8m,斜边长为10m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是_____.15.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为___16.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+2b),宽为(2a+b)的大长方形,那么需要A类、B类和C类卡片的张数分别为______.17.已知是关于的二元一次方程的一个解,则=___.18.如图,,,垂足分别为,,,,点为边上一动点,当_______时,形成的与全等.三、解答题(共66分)19.(10分)如图,是等边三角形,是边上的一点,以为边作等边三角形,使点在直线的同侧,连接.(1)求证:;(2)线段与有什么位置关系?请说明理由20.(6分)请用无刻度的直尺在下列方格中画一条线段将梯形面积平分(画出三种不同的画法).21.(6分)计算:14+(3.14)0+÷22.(8分)解方程组:(1)(2).23.(8分)南京市某花卉种植基地欲购进甲、乙两种兰花进行培育,每株甲种兰花的成本比每株乙种兰花的成本多100元,且用1200元购进的甲种兰花与用900元购进的乙种兰花数量相同.(1)求甲、乙两种兰花每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下培育甲、乙两种兰花,若培育乙种兰花的株数比甲种兰花的3倍还多10株,求最多购进甲种兰花多少株?24.(8分)如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.25.(10分)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?26.(10分)如图,在矩形中,,垂足分别为,连接.求证:四边形是平行四边形.

参考答案一、选择题(每小题3分,共30分)1、B【解析】先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【详解】解:因为点A(-3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.

故选:B.【点睛】本题主要考查点的坐标的性质,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、D【解析】把各项化成最简之后,根据无理数定义判断即可.【详解】解:A项,,为有理数;B项是有限小数,为有理数;C项为分数,是有理数;D项是无限不循环小数,为无理数.故选:D.【点睛】本题主要考查无理数的定义,理解掌握定义是解答关键.3、D【分析】①②构造辅助圆,利用圆周角定理解决问题即可;

③想办法证明BD=AD即可;

④想办法证明∠BAD=45°即可解决问题.【详解】解:如图,由题意:,以A为圆心AB为半径,作⊙A.∵

∴,故①②正确,当时,∠DAC=∠C,

∵∠BAD+∠DAC=90°,∠ABD+∠C=90°,

∴∠BAD=∠ABD,

∴BD=AD,

∵AB=AD,

∴AB=AD=BD,

∴△ABD是等边三角形,故③正确,

当时,∠ABD=∠ADB=67.5°,

∴∠BAD=180°−2×67.5°=45°,

∴∠DAE=∠BAD=45°,

∵AB=AE,AD=AD,

∴△BAD≌△EAD(SAS),∴,故④正确.

故选:D.【点睛】本题考查全等三角形的判定和性质,圆周角定理,等腰三角形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.4、D【解析】直接得出接近的有理数,进而得出答案.【详解】∵<<,

∴8<<9,

∴在8与9之间.

故选:D.【点睛】本题考查了估算无理数的大小,正确得出接近的有理数是解题的关键.5、B【分析】直接利用算术平方根的定义得出答案.【详解】解:4的算术平方根是:1.故选:B.【点睛】此题主要考查了实数的相关性质,正确把握相关定义是解题关键.6、D【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再求出∠α即可.【详解】由三角形的外角性质得,∠1=45°+90°=135°,∠α=∠1+30°=135°+30°=165°.故选D.【点睛】本题考查三角形的外角性质,解题的关键是掌握三角形的外角性质.7、A【分析】根据不等式的性质即可求出答案.【详解】解:A、∵x<y,∴x-2<y-2,故选项A成立;

B、∵x<y,∴4x<4y,故选项B不成立;

C、∵x<y,∴-x>-y,∴-x+2>-y+2,故选项C不成立;

D、∵x<y,∴-3x>-3y,故选项D不成立;

故选:A.【点睛】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.8、B【解析】本题要判定,已知DE=BF,∠BFA=∠DEC=90°,具备了一直角边对应相等,故添加DC=BA后可根据HL判定.【详解】在△ABF与△CDE中,DE=BF,由DE⊥AC,BF⊥AC,可得∠BFA=∠DEC=90°.∴添加DC=AB后,满足HL.故选B.【点睛】本题考查了直角三角形全等的判定定理的应用,注意:判定两直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.9、A【分析】根据垂直平分线的性质,得出AE=BE=6,再由三角形外角的性质得出∠AEC=∠ABE+∠BAE=30°,最后由含30°的直角三角形的性质得出AC的值即可.【详解】解:∵垂直平分,∴AE=BE=6,又∴∠ABE=∠BAE=15°,∴∠AEC=∠ABE+∠BAE=30°,又∵∴在RT△AEC中,故答案为:A.【点睛】本题考查了垂直平分线的性质、三角形的外角的性质、含30°的直角三角形的性质,熟知上述几何性质是解题的关键.10、C【分析】最简公分母是2x﹣1,方程两边都乘以(2x﹣1),即可把分式方程便可转化成一元一次方程.【详解】方程两边都乘以(2x﹣1),得x﹣2=3(2x﹣1),故选C.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.二、填空题(每小题3分,共24分)11、-1【分析】先根据整式的乘法公式进行化简,再代入x即可求解.【详解】==把代入原式=-2+1=-1故答案为:-1.【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的运算法则.12、1b1.【解析】10ab3÷5ab=10÷5·(a÷a)·(b3÷b)=1b1,故答案为1b1.13、40°或140°【分析】根据题意,对等腰三角形分为锐角等腰三角形和钝角等腰三角形进行解答.【详解】解:①如图1,若该等腰三角形为锐角三角形,由题意可知:在△ABC中,AB=AC,BD为AC边上的高,且∠ABD=50°,∴∠A=90°-50°=40°,②如图2,若该等腰三角形为钝角三角形,由题意可知:在△ABC中,AB=AC,BD为AC边上的高,且∠ABD=50°,∴∠BAD=90°-50°=40°,∴∠BAC=180°-40°=140°,综上所述:等腰三角形的顶角度数为40°或140°,故答案为:40°或140°.【点睛】本题考查了等腰三角形的分类讨论问题,以及三角形高的做法,解题的关键是对等腰三角形进行分类,利用数形结合思想进行解答.14、6m【分析】根据三角形的面积公式,RT△ABC的面积等于△AOB、△AOC、△BOC三个三角形面积的和列式求出点O到三边的距离,然后乘以3即可.【详解】设点O到三边的距离为h,

则,

解得h=2m,

∴O到三条支路的管道总长为:3×2=6m.

故答案为:6m.【点睛】本题考查了角平分线上的点到两边的距离相等的性质,以及勾股定理,三角形的面积的不同表示,根据三角形的面积列式求出点O到三边的距离是解题的关键.15、【分析】首先将点A的横坐标代入求得其纵坐标,然后即可确定方程组的解.【详解】解:直线与直线交于点,当时,,点A的坐标为,关于x、y的方程组的解是,故答案为.【点睛】本题考查一次函数与二元一次方程(组)的结合.16、2,2,1【分析】根据长乘以宽,表示出大长方形的面积,即可确定出三类卡片的张数.【详解】解:∵(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+1ab+2b2,∴需要A类卡片2张,B类卡片2张,C类卡片1张.故答案为2,2,1.【点睛】此题考查了多项式乘多项式,弄清题意是解本题的关键.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.17、-5【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把代入方程得:-m-2=3,解得m=-5,故答案为:-5.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18、1【分析】当BP=1时,Rt△ABP≌Rt△PCD,由BC=6可得CP=4,进而可得AB=CP,BP=CD,再结合AB⊥BC、DC⊥BC可得∠B=∠C=90°,可利用SAS判定△ABP≌△PCD.【详解】解:当BP=1时,Rt△ABP≌Rt△PCD,∵BC=6,BP=1,∴PC=4,∴AB=CP,∵AB⊥BC、DC⊥BC,∴∠B=∠C=90°,在△ABP和△PCD中,∴△ABP≌△PCD(SAS),故答案为:1.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键.三、解答题(共66分)19、(1)见解析;(2)平行,理由见解析【分析】(1)根据等边三角形性质推出BC=AC,CD=CE,∠BCA=∠ECD=60°,求出∠BCD=∠ACE,根据SAS证△AEC≌△BDC;

(2)根据△AEC≌△BDC推出∠EAC=∠DBC=∠ACB,根据平行线的判定推出即可.【详解】(1)证明:理由如下:∵和是等边三角形,∴∵,即,在和中,,∴(SAS);(2)解:AE∥BC,理由如下:∵△ACE≌△BCD,,,∴AE∥BC.【点睛】本题考查了等边三角形性质,全等三角形的判定和性质,平行线的判定,关键是求出△ACE≌△BCD.20、见解析【分析】利用数形结合的思想解决问题即可.【详解】解:由题意梯形的面积为18,剪一个三角形面积为9即可;取两底的中点,连接这两个点得到的线段平分梯形的面积.【点睛】本题考查作图应用与设计,梯形的面积,三角形的面积等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21、0【分析】首先计算乘方,然后计算除法,最后从左向右依次计算,求出算式的值是多少即可.【详解】原式=1+21+=0【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.22、(1);(2)【分析】(1)利用加减消元法解;

(2)利用加减消元法解.【详解】(1)①+②得:3x=3,即x=1,

把x=1代入①得:y=3,

所以方程组的解为(2)①×4-②×3得:7x=42,即x=6,

把x=6代入①得:y=4,

所以方程组的解为.【点睛】考查了解二元一次方程组,解二元一次方程组的实质就是消元,消元的方法有:代入消元法与加减消元法.23、(1)每株甲种兰花的成本为400元,每株乙种兰花的成本为300元;(2)最多购进甲种兰花20株.【分析】(1)如果设每株乙种兰花的成本为x元,由“每株甲种兰花的成本比每株乙种兰花的成本多100元”,可知每株甲种兰花的成本为(x+100)元.题中有等量关系:用1200元购进的甲种兰花数量=用900元购进的乙种兰花数量,据此列出方程;(2)设购进甲种兰花a株,根据乙种兰花的株数比甲种兰花的3倍还多10株,成本不超过30000元,列出不等式即可【详解】(1)设每株乙种兰花的成本为x元,则每株甲种兰花的成本为(x+100)元由题意得,解得,x=300,经检验x=300是分式方程的解,∴x+100=300+100=400,答:每株甲种兰花的成本为400元,每株乙种兰花的成本为300元;(2)设购进甲种兰花a株由题意得400a+300(3a+10)≤30000,解得,a≤,∵a是整数,∴a的最大值为20,答:最多购进甲种兰花20株.【点睛】此题考查一元一次不等式应用,分式方程的应用,解题关键在于列出方程24、(1)见解析;(2)6【分析】(1)根据DB⊥BC,CF⊥AE,得出∠D=∠AEC,再结合∠DBC=∠ECA=90°,且BC=CA,证明△DBC≌△ECA,即可得证;

(2)由(1)可得△DBC≌△ECA,可得CE=BD,根据BC=AC=12cmAE是BC的中线,即可得出,即可得出答案.【详解】证明:(1)证明:∵DB⊥BC,CF⊥AE,

∴∠DCB+∠D=∠DCB+∠AEC=90°.

∴∠D=∠AEC.

又∵∠DBC=∠ECA=90°,且BC=CA,

在△DBC和△ECA中,∴△DBC≌△ECA(AAS

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论