2023届四川省自贡市曙光中学八年级数学第一学期期末考试模拟试题含解析_第1页
2023届四川省自贡市曙光中学八年级数学第一学期期末考试模拟试题含解析_第2页
2023届四川省自贡市曙光中学八年级数学第一学期期末考试模拟试题含解析_第3页
2023届四川省自贡市曙光中学八年级数学第一学期期末考试模拟试题含解析_第4页
2023届四川省自贡市曙光中学八年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,则AB,AC,CE的长度关系为(

)A.AB>AC=CE B.AB=AC>CEC.AB>AC>CE D.AB=AC=CE2.下列式子,表示4的平方根的是()A. B.42 C.﹣ D.±3.下列说法错误的是()A.角平分线上的点到角两边的距离相等B.直角三角形的两个锐角互余C.等腰三角形的角平分线、中线、高线互相重合D.一个角等于60°的等腰三角形是等边三角形4.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE

③DE=BE

④AD=AB+CD,四个结论中成立的是()A. B. C. D.5.如图,已知的大小为,是内部的一个定点,且,点,分别是、上的动点,若周长的最小值等于,则的大小为()A. B. C. D.6.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33 B.-33 C.-7 D.77.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A. B. C. D.8.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是().A. B. C. D.1<x<29.直角三角形中,有两条边长分别为3和4,则第三条边长是()A.1 B.5 C. D.5或10.如图①,把4个长为a,宽为b的长方形拼成如图②所示的图形,且a=3b,则根据这个图形不能得到的等式是()A.(a+b)2=4ab+(a-b)2 B.4b2+4ab=(a+b)2C.(a-b)2=16b2-4ab D.(a-b)2+12a2=(a+b)211.下列语句是命题的是()(1)两点之间,线段最短;(2)如果两个角的和是90度,那么这两个角互余.(3)请画出两条互相平行的直线;(4)过直线外一点作已知直线的垂线;A.(1)(2) B.(3)(4) C.(2)(3) D.(1)(4)12.如图在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,BE与CD相交于点F,BF=2CE,H是BC边的中点,连接DH与BE相交于点G,下列结论中:①∠A=67.5°;②DF=AD;③BE=2BG;④DH⊥BC其中正确的个数是()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.如图,在中,.与的平分线交于点,得:与的平分线相交于点,得;;与的平分线相交于点,得,则________________.14.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出如图,此表揭示了(a+b)n(n为非负整数)展开式的各项系数的规律,例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;…;根据以上规律,(a+b)5展开式共有六项,系数分别为______,拓展应用:(a﹣b)4=_______.15.如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠An的度数为.16.在平面直角坐标系中,直线l1∥l2,直线l1对应的函数表达式为,直线l2分别与x轴、y轴交于点A,B,OA=4,则OB=_____.17.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+2b),宽为(2a+b)的大长方形,那么需要A类、B类和C类卡片的张数分别为______.18.一次函数的图像沿轴向上平移3个单位长度,则平移后的图像所对应的函数表达为_____.三、解答题(共78分)19.(8分)如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=80°,∠C=54°,求∠DAC、∠BOA的度数.20.(8分)先化简代数式:,然后再从﹣2≤x≤2的范围内选取一个合适的整数代入求值.21.(8分)某公司购买了一批、型芯片,其中型芯片的单价比型芯片的单价少9元,已知该公司用3120元购买型芯片的条数与用4200元购买型芯片的条数相等.(1)求该公司购买的、型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条型芯片?22.(10分)已知x、y是实数,且x=++1,求9x﹣2y的值.23.(10分)如图,有一个池塘,要到池塘两侧AB的距离,可先在平地上取一个点C,从C不经过池塘可以到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A,B的距离,为什么?24.(10分)已知:如图,点在同一条直线上,求证:25.(12分)解方程组.(1)(2).26.先化简,再求值:,其中x满足x2﹣x﹣1=1.

参考答案一、选择题(每题4分,共48分)1、D【分析】因为AD⊥BC,BD=DC,点C在AE的垂直平分线上,由垂直平分线的性质得AB=AC=CE;【详解】∵AD⊥BC,BD=DC,∴AB=AC;又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE;故选D.【点睛】考查线段的垂直平分线的性质,线段的垂直平分线上的点到线段两个端点的距离相等.2、D【分析】根据平方根的表示方法判断即可.【详解】解:表示4的平方根的是±,故选D.【点睛】本题考查了实数的平方根,熟知定义和表示方法是解此题的关键.3、C【解析】根据角平分线的判定定理、直角三角形的性质、等腰三角形的性质、等边三角形的判定定理判断即可.【详解】A、角平分线上的点到角的两边距离相等,故本选项正确;B.直角三角形的两个锐角互余,故本选项正确;C、应该是:等腰三角形底边上的角平分线、中线、高线互相重合,故此选项错误;D、根据等边三角形的判定定理“有一内角为60°的等腰三角形是等边三角形”知本选项正确.

故选:C.【点睛】本题考查角平分线的性质,直角三角形的性质,等腰三角形的性质,等边三角形的判定,注意,有一个角是60°的“等腰三角形”是等边三角形,而不是有一个角是60°的“三角形”是等边三角形.4、A【分析】过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED=∠BEC=90°,即可判断出正确的结论.【详解】过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB,∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选A.【点睛】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了三角形全等的判定与性质.5、A【分析】作P点关于OA的对称点C,关于OB的对称点D,当点E、F在CD上时,△PEF的周长最小,根据CD=2可求出的度数.【详解】解:如图作P点关于OA的对称点C,关于OB的对称点D,连接CD,交OA于点E,交OB于点F,此时,△PEF的周长最小;连接OC,OD,PE,PF∵点P与点C关于OA对称,∴OA垂直平分PC,,PE=CE,OC=OP,同理可得,∴,∴∵△PEF的周长为,∴△OCD是等边三角形,∴故本题最后选择A.【点睛】本题找到点E、F的位置是解题的关键,要使△PEF的周长最小,通常是把三边的和转化为一条线段进行解答.6、D【解析】试题分析:关于原点对称的两个点,横坐标和纵坐标分别互为相反数.根据性质可得:a=-13,b=20,则a+b=-13+20=1.考点:原点对称7、C【解析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解:根据题意,得.故选C.8、C【分析】先把A点代入y+kx+b得b=3,再把P(1,m)代入y=kx+3得k=m−3,接着解(m−3)x+3>mx−2得x<,然后利用函数图象可得不等式组mx>kx+b>mx−2的解集.【详解】把P(1,m)代入y=kx+3得k+3=m,解得k=m−3,解(m−3)x+3>mx−2得x<,所以不等式组mx>kx+b>mx−2的解集是1<x<.故选:C.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9、D【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边==;当第三边为斜边时,3和4为直角边,第三边==5,故选:D.【点睛】本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.10、D【分析】根据题意得出大正方形边长为(a+b),面积为(a+b)2,中间小正方形的边长为(a-b),面积为(a-b)2,然后根据图形得出不同的等式,对各选项进行验证即可.【详解】图②中的大正方形边长为(a+b),面积为(a+b)2,中间小正方形的边长为(a-b),面积为(a-b)2,由题意可知,大正方形的面积=四个小长方形的面积+小正方形的面积,即=(a+b)2=4ab+(a-b)2,故A项正确;∵a=3b,∴小正方形的面积可表示为4b2,即四个小长方形的面积+小正方形的面积=大正方形的面积,可表示为4b2+4ab=(a+b)2,故B项正确;大正方形的面积可表示为16b2,即大正方形的面积-四个小长方形的面积=小正方形的面积,可表示为(a-b)2=16b2-4ab,故C项正确;只有D选项无法验证,故选:D.【点睛】本题考查了等式的性质及应用,正方形的性质及应用,根据图形得出代数式是解题关键.11、A【分析】判断一件事情的语句叫命题,命题都由题设和结论两部分组成,依此对四个小题进行逐一分析即可;【详解】(1)两点之间,线段最短符合命题定义,正确;(2)如果两个角的和是90度,那么这两个角互余,符合命题定义,正确.(3)请画出两条互相平行的直线只是做了陈述,不是命题,错误;(4)过直线外一点作已知直线的垂线没有做出判断,不是命题,错误,故选:A.【点睛】本题考查了命题的概念:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.注意命题是一个能够判断真假的陈述句.12、C【分析】根据已知条件得到△BCD是等腰直角三角形,由等腰直角三角形的性质得到BD=CD,由BE平分∠ABC,得到∠ABE=22.5°,根据三角形的内角和得到∠A=67.5°;故①正确;根据余角得到性质得到∠DBF=∠ACD,根据全等三角形的性质得到AD=DF,故②正确;根据BE平分∠ABC,且BE⊥AC于E,得到∠ABE=∠CBE,∠AEB=∠CEB=90°,根据全等三角形的性质得到AE=CE=AC,求得BE⊥AC,由于△BCD是等腰直角三角形,H是BC边的中点,得到DH⊥BC,故④正确;推出DH不平行于AC,于是得到BE≠2BG,故③错误.【详解】解:∵∠ABC=45°,CD⊥AB于D,

∴△BCD是等腰直角三角形,

∴BD=CD,

∵BE平分∠ABC,

∴∠ABE=22.5°,

∴∠A=67.5°;故①正确;

∵CD⊥AB于D,BE⊥AC于E,

∴∠DBF+∠A=90°,∠ACD+∠A=90°,

∴∠DBF=∠ACD,

在△BDF与△CDA中,∴△BDF≌△CDA(ASA),

∴AD=DF,故②正确;

∵BE平分∠ABC,且BE⊥AC于E,

∴∠ABE=∠CBE,∠AEB=∠CEB=90°,

∴在△ABE与△CBE中,

∴△ABE≌△CBE(ASA),

∴AE=CE=AC,

∵△BCD是等腰直角三角形,H是BC边的中点,

∴DH⊥BC,故④正确;

∴DH不平行于AC,

∵BH=CH,∴BG≠EG;

∴BE≠2BG,故③错误.

故选:C.【点睛】本题考查了等腰直角三角形的判定与性质,角平分线的性质,全等三角形的判定与性质,仔细分析图形并熟练掌握各性质是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知,…,依此类推可知的度数.【详解】解:∵∠ABC与∠ACD的平分线交于点A1,∴,同理可得,…∴.故答案为:.【点睛】本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.14、1,5,10,10,5,1a4﹣4a3b+6a2b2﹣4ab3+b4【分析】经过观察发现,这些数字组成的三角形是等腰三角形,两腰上的数都是1,从第3行开始,中间的每一个数都等于它肩上两个数字之和,展开式的项数比它的指数多1.根据上面观察的规律很容易解答问题.【详解】(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.故答案为:1、5、10、10、5、1,a4﹣4a3b+6a2b2﹣4ab3+b4.【点睛】此题考查完全平方公式,正确观察已知的式子与对应的三角形之间的关系是关键.15、.【解析】试题解析:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1==40°;同理可得,∠DA3A2=20°,∠EA4A3=10°,∴∠An=.考点:1.等腰三角形的性质;2.三角形外角的性质.16、1【详解】∵直线∥,直线对应的函数表达式为,∴可以假设直线的解析式为,∵,∴代入得到∴∴故答案为1.17、2,2,1【分析】根据长乘以宽,表示出大长方形的面积,即可确定出三类卡片的张数.【详解】解:∵(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+1ab+2b2,∴需要A类卡片2张,B类卡片2张,C类卡片1张.故答案为2,2,1.【点睛】此题考查了多项式乘多项式,弄清题意是解本题的关键.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.18、【分析】根据”上加下减”的平移规律解答即可.【详解】解:一次函数的图像沿轴向上平移3个单位长度,则平移后的图像所对应的函数表达为:.故答案:【点睛】本题考查了一次函数图像与几何变换,求直线平移后的解析式要注意平移时候k值不变,解析式变化的规律是:上加下减,左加右减.三、解答题(共78分)19、∠DAC=36°;∠BOA=117°【分析】首先利用AD是高,求得∠ADC,进一步求得∠DAC度数可求;利用三角形的内角和求得∠ABC,再由BF是∠ABC的角平分线,求得∠ABO,故∠BOA的度数可求.【详解】解:∵AD是高∴∠ADC=90°∵∠C=54°∴∠DAC=180°﹣90°﹣54°=36°∵∠BAC=80°,∠C=54°,AE是角平分线∴∠BAO=40°,∠ABC=46°∵BF是∠ABC的角平分线∴∠ABO=23°∴∠BOA=180°﹣∠BAO﹣∠ABO=117°【点睛】本题考查了利用角平分线的性质、三角形的内角和定理解决问题的能力,结合图形,灵活运用定理解决问题.20、;【解析】试题分析:本题考查了分式的化简求值,原式第二项约分后,两项通分并利用同分母分式的加法法则计算得到最简结果,把x=0代入计算即可求出值.解:原式=+===,当x=0时,原式=.21、(1)A型芯片的单价为2元/条,B型芯片的单价为35元/条;(2)1.【解析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【详解】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=2.答:A型芯片的单价为2元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:2a+35(200﹣a)=621,解得:a=1.答:购买了1条A型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论