2023届内蒙古包头市东河区数学八年级第一学期期末学业质量监测模拟试题含解析_第1页
2023届内蒙古包头市东河区数学八年级第一学期期末学业质量监测模拟试题含解析_第2页
2023届内蒙古包头市东河区数学八年级第一学期期末学业质量监测模拟试题含解析_第3页
2023届内蒙古包头市东河区数学八年级第一学期期末学业质量监测模拟试题含解析_第4页
2023届内蒙古包头市东河区数学八年级第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.计算的结果是A. B. C. D.2.若实数x,y,z满足,则下列式子一定成立的是()A.x+y+z=0 B.x+y-2z=0 C.y+z-2x=0 D.z+x-2y=03.在下列实数中,无理数是()A.3 B.3.14 C. D.4.如图,在和中,,,于点,点在上,过作,使,连接交于点,当时,下列结论:①;②;③;④.其中正确的有().A.1个 B.2个 C.3个 D.4个5.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A.1 B.2 C.3 D.46.若将,,,四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是()A. B. C. D.7.下列命题中是真命题的是()A.平面内,过一点有且只有一条直线与已知直线平行B.,,,,…等五个数都是无理数C.若,则点在第二象限D.若三角形的边、、满足:,则该三角形是直角三角形8.在一次中学生田径运动会上,参加男子跳高的21名运动员的成绩如下表所示:成绩/m1.501.601.651.701.751.80人数235443则这些运动员成绩的中位数、众数分别为()A.1.65m,1.70m B.1.65m,1.65mC.1.70m,1.65m D.1.70m,1.70m9.若分式2x-3有意义,则x的取值范围是(A.x>3 B.x=3 C.x≠3 D.x<310.若在实数范围内有意义,则x的取值范围是()A. B. C. D.11.如图,AB=AD,要说明△ABC≌△ADE,需添加的条件不能是()A.∠E=∠C B.AC=AE C.∠ADE=∠ABC D.DE=BC12.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC上的动点,则△BEQ周长的最小值为()A.5 B.6 C.42 D.二、填空题(每题4分,共24分)13.分解因式:(1)3a2-6a+3=________;(2)x2+7x+10=_______.14.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为_______米.15.已知直线y=kx+b与x轴正半轴相交于点A(m+4,0),与y轴正半轴相交于点B(0,m),点C在第四象限,△ABC是以AB为斜边的等腰直角三角形,则点C的坐标是______.16.的立方根为______.17.因式分解:__________.18.使有意义的的取值范围是_______.三、解答题(共78分)19.(8分)已知,求代数式的值.20.(8分)如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.21.(8分)星期四上午6点,王老师从学校出发,驾车到市里开会,8点准时到会场,中午12点钟回到学校,他在这一段时间内的行程(即离开学校的距离)与时间的关系可用图中的折线表示,请根据图中提供的信息,解答下列问题:(1)开会地点离学校多远?(2)会议结束后王老师驾车返回学校的平均速度是多少?22.(10分)在平面直角坐标系中,已知,,点,在轴上方,且四边形的面积为32,(1)若四边形是菱形,求点的坐标.(2)若四边形是平行四边形,如图1,点,分别为,的中点,且,求的值.(3)若四边形是矩形,如图2,点为对角线上的动点,为边上的动点,求的最小值.23.(10分)先化简,再化简:,请你从﹣2<a<2的整数解中选取一个合适的数代入求值.24.(10分)如图,在和中,,是的中点,于点,且.(1)求证:;(2)若,求的长.25.(12分)阅读理解:我们把称为二阶行列式,其运算法则为,如:,解不等式,请把解集在数轴上表示出来.26.如图:已知直线经过点,.(1)求直线的解析式;(2)若直线与直线相交于点,求点的坐标;(3)根据图象,直接写出关于的不等式的解集.

参考答案一、选择题(每题4分,共48分)1、B【分析】首先通分,然后进行同分母分式的减法运算即可.【详解】.故选:B.【点睛】此题考查了分式的加减法.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.2、D【解析】∵(x﹣z)2﹣4(x﹣y)(y﹣z)=1,∴x2+z2﹣2xz﹣4xy+4xz+4y2﹣4yz=1,∴x2+z2+2xz﹣4xy+4y2﹣4yz=1,∴(x+z)2﹣4y(x+z)+4y2=1,∴(x+z﹣2y)2=1,∴z+x﹣2y=1.故选D.3、D【分析】根据无理数的定义,即可得出符合题意的选项.【详解】解:3,3.14,是有理数,是无理数,故选:D.【点睛】本题考查的是无理数的概念,无理数即无限不循环小数,它的表现形式为:开方开不尽的数,与π有关的数,无限不循环小数.4、C【分析】利用直角三角形两锐角互余以及三角形外角的性质,结合已知可求得∠FAG=∠FGA=75,利用等角对等边证明①正确;在和中,分别利用30度角的性质求得EF=2AE=4DE,证明②正确;同样利用30度角的性质求得,,证明③正确;过A作AH⊥EF于H,证得,从证得,④错误.【详解】∵FA⊥EA,∠F=30,∴∠AEF=60,∵∠BAC=90,AB=AC,AD⊥BC,∴∠DAC=∠C=45,AD=DC=BD,∵∠EAC=15,∴∠FAG=90-15=75,∠DAE=45-15=30,∴∠FGA=∠AEF+∠EAC=60+15=75,∴∠FAG=∠FGA=75,∴AF=FG,①正确;∵在中,∠ADE=90,∠DAE=30,∴AE=2DE,,∵在中,∠EAF=90,∠F=30,∴EF=2AE=4DE,②正确;∴,③正确;过A作AH⊥EF于H,在和中,;∴,∴AD=AH,在中,∠AHG=90,∴,∴,∴,④错误;综上,①②③正确,共3个.故选:C.【点睛】本题考查了等腰直角三角形的性质,含30度角的直角三角形的性质,全等三角形的判定和性质,利用30度所对直角边等于斜边一半,邻边是对边的倍是解题的关键.5、A【解析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质6、B【分析】先估算出各数,再根据实数与数轴的关系即可得出结论.【详解】是负数,在原点的左侧,不符合题意;,所以23,符合题意;是负数,在原点的左侧,不符合题意;,即3,在墨迹覆盖处的右边,不符合题意.故选:B.【点睛】本题考查了实数与数轴,熟知实数与数轴上的点的一一对应关系是解答本题的关键.7、D【分析】根据平行公理、无理数的概念、点坐标特征、勾股定理的逆定理判断即可.【详解】解:A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,本选项说法是假命题;B、,,,,…中只有,…两个数是无理数,本选项说法是假命题;C、若,则点在第一象限,本选项说法是假命题;D、,化简得,则该三角形是直角三角形,本选项说法是真命题;故选D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:共21名学生,中位数落在第11名学生处,第11名学生的跳高成绩为1.70m,故中位数为1.70;

跳高成绩为1.65m的人数最多,故跳高成绩的众数为1.65;

故选:C.【点睛】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.9、C【解析】根据分式成立的条件求解.【详解】解:由题意可知x-3≠0解得x≠3故选:C.【点睛】本题考查分式成立的条件,掌握分母不能为零是解题关键.10、B【分析】根据被开方数大于等于0列式计算即可得解.【详解】由题意得,x+1≥0,解得x≥-1.故答案为:B.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.11、D【解析】∵AB=AD,且∠A=∠A,∴当∠E=∠C时,满足AAS,可证明△ABC≌△ADE,当AC=AE时,满足SAS,可证明△ABC≌△ADE,当∠ADE=∠ABC时,满足ASA,可证明△ABC≌△ADE,当DE=BC时,满足SSA,不能证明△ABC≌△ADE,故选D.12、B【解析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.【详解】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE=AD∴△BEQ周长的最小值=DE+BE=5+1=1.故选:B.【点睛】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.二、填空题(每题4分,共24分)13、3(a-1)2(x+2)(x+5)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;

(2)原式利用十字相乘法分解即可.【详解】解:(1)3a2-6a+3=3(a2-2a+1)=3(a-1)2(2)x2+7x+10=(x+2)(x+5)故答案为:3(a-1)2;(x+2)(x+5)【点睛】此题考查了提公因式法,公式法及十字相乘法分解因式,熟练掌握因式分解的方法是解本题的关键.14、3.4×10-1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000034=3.4×10-1,

故答案为:3.4×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、(2,-2)【分析】根据等腰直角三角形的性质构造全等三角形,证明全等三角形后,根据全等的性质可得对应线段等,即可得到等量,列出方程求解即可得到结论;【详解】解:如图,过C作CF⊥x轴,CE⊥y轴,垂足分别为E、F,则四边形OECF为矩形,∠BEC=∠CFA=90°,由题意可知,∠BCA=90°,BC=AC,∵四边形OECF为矩形,∴∠ECF=90°,∴∠1+∠3=90°,又∵∠2+∠3=90°,∴∠1=∠2,在△BEC和△AFC中,∴△BEC≌△AFC∴CE=CF,AF=BE,设C点坐标为(a,b),则AF=m+4-a,BE=m-b∴解得,∴点C(2,-2)故答案为:(2,-2)【点睛】本题考查一次函数与坐标轴交点、等腰直角三角形性质、三角形全等性质和判定、两点间距离等知识点,画出图形,构造全等图形是解题的关键.16、【解析】根据立方根的定义求解可得.【详解】解:,的立方根为,故答案为:.【点睛】本题主要考查立方根,解题的关键是掌握立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.17、【分析】因为-6=-3×2,-3+2=-1,所以可以利用十字相乘法分解因式即可得解.【详解】利用十字相乘法进行因式分解:.【点睛】本题考查了分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法与十字相乘法与分组分解法分解.18、【分析】根据二次根式有意义以及分式有意义得条件进一步求解即可.【详解】由题意得:,及,∴且,即,故答案为:.【点睛】本题主要考查了分式与二次根式有意义的情况,熟练掌握相关概念是解题关键.三、解答题(共78分)19、11【解析】先求出m+n和mn的值,再根据完全平方公式变形,代入求值即可.【详解】∵,∴m+n=2,mn=1∴=.【点睛】此题考查了二次根式的混合运算法则,完全平方公式的应用,主要考查了学生的计算能力,题目较好.20、(1)见解析;(2)6【分析】(1)根据DB⊥BC,CF⊥AE,得出∠D=∠AEC,再结合∠DBC=∠ECA=90°,且BC=CA,证明△DBC≌△ECA,即可得证;

(2)由(1)可得△DBC≌△ECA,可得CE=BD,根据BC=AC=12cmAE是BC的中线,即可得出,即可得出答案.【详解】证明:(1)证明:∵DB⊥BC,CF⊥AE,

∴∠DCB+∠D=∠DCB+∠AEC=90°.

∴∠D=∠AEC.

又∵∠DBC=∠ECA=90°,且BC=CA,

在△DBC和△ECA中,∴△DBC≌△ECA(AAS).

∴AE=CD;

(2)由(1)可得△DBC≌△ECA∴CE=BD,∵BC=AC=12cmAE是BC的中线,∴,∴BD=6cm.【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC≌△ECA解题关键.21、(1);(2).【分析】(1)根据函数图象,即可得到答案;(2)根据路程÷时间=速度,即可得到答案.【详解】(1)根据函数图象,可知:开会地点离学校;(2)根据图象,可知:会议结束后王老师驾车返回学校用了1个小时,60÷1=.答:会议结束后王老师驾车返回学校的平均速度是.【点睛】本题主要考查根据函数图象解决实际问题,理解函数图象上点的坐标的实际意义,是解题的关键.22、(1)(-4,4);(2);(3)【分析】(1)作DH⊥AB,先求出AB,根据菱形性质得AD=AB=8,再根据勾股定理求出AH,再求OH;(2)延长EF与x轴相交于G,作EP⊥AB,根据平行线性质证△ECF≌△GBF(AAS),得BG=EC=4,EF=FG,AG=AB+BG=12,EG=2EF,根据勾股定理得:(AE+EG)2-2AE∙EG=AG2,根据三角形面积公式得:所以(AE+EG)2-2×48=122;(3)作点B关于AC的对称点,作,交AC于点M,此时BM+MN最小,连接;根据矩形性质和轴对称性质得:AB=8,BC=,AC=,求得=,=AB=8,,设AN=x,则BN=8-x,由勾股定理可得:,可进一步求出.【详解】(1)作DH⊥AB因为,,所以AB=4-(-4)=8,因为四边形ABCD是菱形,所以AD=AB=8,因为四边形的面积为32,所以DH=32÷8=4所以根据勾股定理可得:AH=所以OH=AH-OA=-4所以点D的坐标是(-4,4)(2)延长EF与x轴相交于G,作EP⊥AB因为四边形ABCD是平行四边形,所以DC=AB=8,DC//AB所以∠C=∠CBG,∠CEF=∠BGF,因为E,F分别是CD,AB的中点,所以DE=CE=4,CF=BF,所以△ECF≌△GBF(AAS)所以BG=EC=4,EF=FG所以AG=AB+BG=12,EG=2EF,又因为AF⊥EF所以AE2+EG2=AG2所以(AE+EG)2-2AE∙EG=AG2由(1)知EP=DH=4所以根据三角形面积公式得:所以所以(AE+EG)2-2×48=122所以所以AE+2EF=(3)作点B关于AC的对称点,作,交AC于点M,此时BM+MN最小;连接.因为四边形ABCD是矩形,所以由已知可得:AB=8,BC=所以AC=所以在三角形ABC中,AC上的高是:因为AC是的对称轴,所以=,=AB=8,设AN=x,则BN=8-x,由勾股定理可得:解得x=,所以所以BM+MN=即BM+MN的最小值是.【点睛】考核知识点:矩形性质,勾股定理.根据已知条件构造直角三角形,利用勾股定理解决问题是关键.23、,当时,原式=2【分析】先利用分式混合运算的顺序和法则对分式进行化简,然后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论