版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.点关于轴对称的点的坐标为()A. B. C. D.2.下列添括号正确的是()A. B.C. D.3.下列函数中,随增大而减小的是()A. B. C. D.4.下列四个图形中,是轴对称图形的个数是()A.1 B.2 C.3 D.45.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.806.一个三角形的两边长为3和9,第三边长为偶数,则第三边长为()A.6或8 B.8或10 C.8 D.107.若分式的值为0,则x的值应为()A. B. C. D.8.如图,等腰△ABC中,AB=AC,MN是边BC上一条运动的线段(点M不与点B重合,点N不与点C重合),且MN=BC,MD⊥BC交AB于点D,NE⊥BC交AC于点E,在MN从左至右的运动过程中,△BMD和△CNE的面积之和()A.保持不变 B.先变小后变大C.先变大后变小 D.一直变大9.下列命题中,属于真命题的是().A.两个锐角之和为钝角 B.同位角相等C.钝角大于它的补角 D.相等的两个角是对顶角10.下列计算错误的是()A. B.C. D.11.如图,已知直线y=x+4与x轴、y轴分别交于A、B两点,C点在x轴正半轴上且OC=OB,点D位于x轴上点C的右侧,∠BAO和∠BCD的角平分线AP、CP相交于点P,连接BC、BP,则∠PBC的度数为()A.43 B.44 C.45 D.4612.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20 C.16 D.以上答案均不对二、填空题(每题4分,共24分)13.若.则的平方根是_____.14.定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.已知在“等对角四边形ABCD”中,,则边BC的长是___________.15.比较大小:_________16.如图,在中,是边的中点,垂直于点,则_______________度.17.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.18.已知一次函数的图像经过点(m,1),则m=____________.三、解答题(共78分)19.(8分)如图,“复兴一号“水稻的实验田是边长为m米的正方形去掉一个边长为n米(m>n)正方形蓄水池后余下的部分,“复兴二号“水稻的试验田是边长为(m-n)米的正方形,两块试验田的水稻都收获了a千克.(1)哪种水稻的单位面积产量高?为什么?(2)高的单位面积产量比低的单位面积产量高多少?20.(8分)某中学七班共有45人,该班计划为每名学生购买一套学具,超市现有A、B两种品牌学具可供选择已知1套A学具和1套B学具的售价为45元;2套A学具和5套B学具的售价为150元.、B两种学具每套的售价分别是多少元?现在商店规定,若一次性购买A型学具超过20套,则超出部分按原价的6折出售设购买A型学具a套且不超过30套,购买A、B两种型号的学具共花费w元.请写出w与a的函数关系式;请帮忙设计最省钱的购买方案,并求出所需费用.21.(8分)如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.求证:BE=BD.22.(10分)如图是10×8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长都是1个单位,线段的端点均在格点上,且点的坐标为,按下列要求用没有刻度的直尺画出图形.(1)请在图中找到原点的位置,并建立平面直角坐标系;(2)将线段平移到的位置,使与重合,画出线段,然后作线段关于直线对称线段,使的对应点为,画出线段;(3)在图中找到一个各点使,画出并写出点的坐标.23.(10分)解方程(1)(2)24.(10分)计算:(1)﹣(2)(-1)0﹣|1﹣25.(12分)用配方法解方程:.26.某学校计划选购、两种图书.已知种图书每本价格是种图书每本价格的2.5倍,用1200元单独购买种图书比用1500元单独购买种图书要少25本.(1)、两种图书每本价格分别为多少元?(2)如果该学校计划购买种图书的本数比购买种图书本数的2倍多8本,且用于购买、两种图书的总经费不超过1164元,那么该学校最多可以购买多少本种图书?
参考答案一、选择题(每题4分,共48分)1、A【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点关于轴对称的点的坐标为故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.2、C【分析】添加括号,若括号前是负号,则括号内需要变号,根据这个规则判断下列各选项.【详解】A中,,错误;B中,,错误;C中,,正确;D中,,错误故选:C【点睛】本题考查添括号,注意去括号和添括号关注点一样,当括号前为负号时,去括号需要变号.3、D【分析】根据一次函数的性质逐一判断即可得出答案.【详解】A.,,随增大而增大,不符合题意;B.,,随增大而增大,不符合题意;C.,,随增大而增大,不符合题意;D.,,随增大而减小,符合题意;故选:D.【点睛】本题主要考查一次函数的性质,掌握一次函数的图象和性质是解题的关键.4、D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【详解】解:根据题意,甲、乙、丙、丁都是轴对称图形,共4个,故选:D.【点睛】本题考查了轴对称图形的特征,掌握轴对称图形的特征是解题的关键.5、C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S阴影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故选C.考点:勾股定理.6、B【分析】根据三角形中两边之和大于第三边,两边之差小于第三边进行解答.【详解】解:设第三边长为x,有,解得,即;又因为第三边长为偶数,则第三边长为8或10;故选:B.【点睛】本题主要考查了三角形中的三边关系,掌握:两边之和大于第三边,两边之差小于第三边是解题的关键.7、A【解析】根据分式的值为零的条件可以求出x的值.【详解】由分式的值为零的条件得x﹣1=2,且x﹣3≠2,解得:x=1.故选A.【点睛】本题考查了分式值为2的条件,具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.8、B【分析】妨设BC=2a,∠B=∠C=α,BM=m,则CN=a﹣m,根据二次函数即可解决问题.【详解】解:不妨设BC=2a,∠B=∠C=α,BM=m,则CN=a﹣m,则有S阴=•m•mtanα+(a﹣m)•(a﹣m)tanα=tanα(m2+a2﹣2am+m2)=tanα(2m2﹣2am+a2)=;当时,有最小值;∴S阴的值先变小后变大,故选:B.【点睛】此题考查等腰三角形的性质,关键根据二次函数的性质得出面积改变规律.9、C【分析】根据初中几何的相关概念进行判断,确定真命题【详解】A.钝角为大于90°且小于180°的角,两个锐角之和未满足条件,假命题B.同位角不一定相等,假命题C.钝角的补角小于90°,钝角大于90°且小于180°,真命题D.如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,假命题【点睛】本题考查了初中几何中的几个基本概念,熟练掌握钝角、锐角、同位角、补角以及对顶角是解题的关键10、B【分析】根据二次根式的加减法对A进行判断;根据平方差公式对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】A、,计算正确,不符合题意;B、,计算错误,符合题意;C、,计算正确,不符合题意;D、,计算正确,不符合题意;故选:B.【点睛】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.11、C【分析】依据一次函数即可得到AO=BO=4,再根据OC=OB,即可得到,,过P作PE⊥AC,PF⊥BC,PG⊥AB,即可得出BP平分,进而得到.【详解】在中,令,则y=4;令y=0,则,∴,,∴,又∵CO=BO,BO⊥AC,∴与是等腰直角三角形,∴,,如下图,过P作PE⊥AC,PF⊥BC,PG⊥AB,∵和的角平分线AP,CP相交于点P,∴,∴BP平分,∴,故选:C.【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线性质证明方法是解决本题的关键.12、B【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形;②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=1.所以,三角形的周长为1.故选:B.【点睛】本题考查了等腰三角形的性质,分类讨论是关键.二、填空题(每题4分,共24分)13、【分析】先根据算术平方根的非负性、偶次方的非负性求出x、y的值,从而可得的值,再根据平方根的定义即可得.【详解】由题意得:,解得,则,因此,的平方根是,故答案为:.【点睛】本题考查了算术平方根的非负性、平方根等知识点,掌握理解算术平方根的非负性是解题关键.14、或【分析】根据四边形有两组对角,分别讨论每一组对角相等的情况,再解直角三角形即可求解.【详解】解:分两种情况:情况一:ADC=∠ABC=90°时,延长AD,BC相交于点E,如图所示:∵∠ABC=90°,∠DAB=60°,AB=4∴∠E=30°,AE=2AB=8,且DE=CD=,AD=AE-DE=,连接AC,在Rt△ACD中,AC=,在Rt△ABC中,∴;情况二:∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图所示:则∠AMD=∠DNB=90°,∴四边形BNDM是矩形,∵60°,∴,∴,,∵∠DAB=60°,∠DMA=90°,且AM=AB-BM=AB-DN=4-,∴,∴,∴,∴,综上所述,或,故答案为:或.【点睛】本题借助“等对角四边形”这个新定义考查了解直角三角形及勾股定理,熟练掌握特殊角的三角函数及求值是解决本题的关键.15、<【分析】将两数平方后比较大小,可得答案.【详解】∵,,18<20∴<故填:<.【点睛】本题考查比较无理数的大小,无理数的比较常用平方法.16、65【分析】根据等腰三角形的性质及三线合一的性质可知的度数,再由三角形内角和定理即可得到的度数.【详解】∵∴是等腰三角形∵D是边的中点,∴AD平分∴∵⊥∴∴,故答案为:65.【点睛】本题主要考查了等腰三角形的性质及三线合一的性质,熟练掌握相关性质知识是解决本题的关键.17、240°【解析】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.18、-1【分析】把(m,1)代入中,得到关于m的方程,解方程即可.【详解】解:把(m,1)代入中,得
,解得m=-1.
故答案为:-1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题方法一般是代入这个点求解.三、解答题(共78分)19、(1)“复兴二号”水稻的单位面积产量高,理由见解析;(2)kg【分析】(1)根据题意分别求出两种水稻得单位产量,比较即可得到结果;(2)根据题意列出算式,计算即可得到结果.【详解】(1)根据题意知,“复兴一号“水稻的实验田的面积为,“复兴二号“水稻的实验田的面积为,∴“复兴一号“水稻的实验田的单位产量为(千克/米2),“复兴二号“水稻的实验田的单位产量为(千克/米2),则-==,∵m、n均为正数且m>n,∴-<0,∴“复兴二号”水稻的单位面积产量高;(2)由(1)知,∴高的单位面积产量比低的单位面积产量高(kg).【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.20、(1)A、B两种学具每套的售价分别是25和20元;(2),;购买45套B型学具所需费用最省钱,所需费用为900元.【解析】(1)设A种品牌的学具售价为x元,B种品牌的学具售价为y元,根据1套A学具和1套B学具的售价为45元,2套A学具和5套B学具的售价为150元,列出二元一次方程组解答即可;(2)①根据总花费=购买A型学具的费用+购买B型学具的费用,列出函数关系式即可;②分两种情况进行比较即可,第一种情况:由函数关系式可知a=30时花费已经最低,需要费用950元;第二种情况:购买45套B型学具需要900元.【详解】解:设A种品牌的学具售价为x元,B种品牌的学具售价为y元,根据题意有,,解之可得,所以A、B两种学具每套的售价分别是25和20元;因为,其中购买A型学具的数量为a,则购买费用,即函数关系式为:,;符合题意的还有以下情况:Ⅰ、以的方案购买,因为-5<0,所以时,w为最小值,即元;Ⅱ、由于受到购买A型学具数量的限制,购买A型学具30套w已是最小,所以全部购买B型学具45套,此时元元,综上所述,购买45套B型学具所需费用最省钱,所需费用为:900元.故答案为(1)A、B两种学具每套的售价分别是25和20元;(2)①w=-5a+1100,(20<a≤30);②购买45套B型学具所需费用最省钱,所需费用为900元.【点睛】本题考查了二元一次方程组和一次函数的应用.21、证明见解析.【分析】根据等边三角形三线合一的性质可得AD为∠BAC的角平分线,根据等边三角形各内角为60°即可求得∠BAE=∠BAD=30°,进而证明△ABE≌△ABD,得BE=BD.【详解】证明:∵△ABC和△ADE是等边三角形,AD为BC边上的中线,
∴AE=AD,AD为∠BAC的角平分线,
即∠CAD=∠BAD=30°,
∴∠BAE=∠BAD=30°,
在△ABE和△ABD中,,
∴△ABE≌△ABD(SAS),
∴BE=BD.【点睛】本题考查了全等三角形的证明和全等三角形对应边相等的性质,考查了等边三角形各边长、各内角为60°的性质,本题中求证△ABE≌△ABD是解题的关键.22、(1)见解析;(2)见解析;(3)见解析G()【分析】(1)根据A点坐标即可确定原点,建立平面直角坐标系;(2)根据平移和轴对称的性质即可作图;(3)连接AD,BC交于J,可得四边形ABCD为正方形,则AD⊥BC,延长AD至K,平移线段BC至EK,使B点跟E点重合,可得EH⊥AK与G点,再根据一次函数的图像与性质即可求出G点坐标.【详解】(1)如图所示,O点及坐标系为所求;(2)如图,线段,线段为所求;(3)如图,为所求,由直角坐标系可知A,D(3,2),故求得直线AD的解析式为:y=;由直角坐标系可知E,D(5,0),故求得直线AD的解析式为:y=;联立两函数得,解得∴G().【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知平行、轴对称的特点,待定系数法求解解析式及交点坐标的求解.23、(1)原分式方程的解为;(2)原分式方程的解为.【分析】(1)、(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;【详解】(1)解:两边同乘,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 室内石材工程合同范例
- 特种宠物服务合同范例
- 私人买卖车辆保险合同范例
- 烧烤室外租赁合同范例
- 代还欠款合同范例
- 邛崃企业保洁合同范例
- 北京培训合同范例
- 农业务工合同范例
- 香菇棒购销合同范例
- 银行冠名合同范例规定
- 城市轨道交通工程监理控制要点
- 初高中教学一体化
- 冰上冬捕安全培训课件
- 高途入职培训功底测题
- 全国大学生职业规划大赛就业能力展示
- 2024年中考英语专题复习:语法填空(含练习题及答案)
- 山西省运城市2023-2024学年高一上学期期末生物试题
- 2024年江苏徐矿综合利用发电有限公司招聘笔试参考题库含答案解析
- 统编版六年级语文词句段运用练习
- 打叶复烤工艺流程简图课件
- 施工现场入场安全教育课件
评论
0/150
提交评论