![陕西省西安新城区七校联考2022年八年级数学第一学期期末调研模拟试题含解析_第1页](http://file4.renrendoc.com/view3/M00/3C/15/wKhkFmawLMqAVciTAAHyYqc-LrU587.jpg)
![陕西省西安新城区七校联考2022年八年级数学第一学期期末调研模拟试题含解析_第2页](http://file4.renrendoc.com/view3/M00/3C/15/wKhkFmawLMqAVciTAAHyYqc-LrU5872.jpg)
![陕西省西安新城区七校联考2022年八年级数学第一学期期末调研模拟试题含解析_第3页](http://file4.renrendoc.com/view3/M00/3C/15/wKhkFmawLMqAVciTAAHyYqc-LrU5873.jpg)
![陕西省西安新城区七校联考2022年八年级数学第一学期期末调研模拟试题含解析_第4页](http://file4.renrendoc.com/view3/M00/3C/15/wKhkFmawLMqAVciTAAHyYqc-LrU5874.jpg)
![陕西省西安新城区七校联考2022年八年级数学第一学期期末调研模拟试题含解析_第5页](http://file4.renrendoc.com/view3/M00/3C/15/wKhkFmawLMqAVciTAAHyYqc-LrU5875.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知的外角中,若,则等于()A.50° B.55° C.60° D.65°2.如果等腰三角形两边长是5cm和2cm,那么它的周长是()A.7cm B.9cm C.9cm或12cm D.12cm3.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x元/斤,y元/斤,则可列方程为()A. B.C. D.4.若一组数据,0,2,4,的极差为7,则的值是().A. B.6 C.7 D.6或5.如图所示,△ABC≌△BAD,点A与点B,点C与点D是对应顶点,如果∠DAB=50°,∠DBA=40°,那么∠DAC的度数为()A.50° B.40° C.10° D.5°6.已知三角形两边长分别为5cm和16cm,则下列线段中能作为该三角形第三边的是()A.24cm B.15cm C.11cm D.8cm7.如图,∠ACD是△ABC的一个外角,过点D作直线,分别交AC和AB于点E,H.则下列结论中错误的是()A.∠HEC>∠BB.∠B+∠ACB=180°-∠AC.∠B+∠ACB<180°D.∠B>∠ACD8.下列计算结果正确的是()A. B. C. D.9.下列命题是假命题的是()A.同角(或等角)的余角相等B.三角形的任意两边之和大于第三边C.三角形的内角和为180°D.两直线平行,同旁内角相等10.等式(x+4)0=1成立的条件是()A.x为有理数 B.x≠0 C.x≠4 D.x≠-411.下列各式的变形中,正确的是()A. B. C. D.12.下图是北京世界园艺博览会园内部分场馆的分布示意图,在图中,分别以正东、正北方向为轴、轴的正方向建立平向直角坐标系,如果表示演艺中心的点的坐标为,表示水宁阁的点的坐标为,那么下列各场馆的坐标表示正确的是()A.中国馆的坐标为B.国际馆的坐标为C.生活体验馆的坐标为D.植物馆的坐标为二、填空题(每题4分,共24分)13.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为14.已知函数y=3xn-1是正比例函数,则n的值为_____.15.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.16.如图,在△ABC中,∠A=70°,点O到AB,BC,AC的距离相等,连接BO,CO,则∠BOC=________.17.已知,则___________.18.的相反数是__________.三、解答题(共78分)19.(8分)如图,正方形的边,在坐标轴上,点的坐标为.点从点出发,以每秒1个单位长度的速度沿轴向点运动;点从点同时出发,以相同的速度沿轴的正方向运动,规定点到达点时,点也停止运动,连接,过点作的垂线,与过点平行于轴的直线相交于点,与轴交于点,连接,设点运动的时间为秒.(1)线段(用含的式子表示),点的坐标为(用含的式子表示),的度数为.(2)经探究周长是一个定值,不会随时间的变化而变化,请猜测周长的值并证明.(3)①当为何值时,有.②的面积能否等于周长的一半,若能求出此时的长度;若不能,请说明理由.20.(8分)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)40002500售价(元/部)43003000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.21.(8分)如图,点A、C、D、B在同一条直线上,且(1)求证:(2)若,求的度数.22.(10分)某中学七班共有45人,该班计划为每名学生购买一套学具,超市现有A、B两种品牌学具可供选择已知1套A学具和1套B学具的售价为45元;2套A学具和5套B学具的售价为150元.、B两种学具每套的售价分别是多少元?现在商店规定,若一次性购买A型学具超过20套,则超出部分按原价的6折出售设购买A型学具a套且不超过30套,购买A、B两种型号的学具共花费w元.请写出w与a的函数关系式;请帮忙设计最省钱的购买方案,并求出所需费用.23.(10分)先化简,再求值:,其中x满足x2﹣x﹣1=1.24.(10分)如图,点在线段上,,,,是的中点.(1)求证:;(2)若,,求的度数.25.(12分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.26.(列二元一次方程组求解)班长安排小明购买运动会的奖品,下面对话是小明买回奖品时与班长的对话情境:小明说:“买了两种不同的笔记本共50本,单价分别是5元和9元,我给了400元,现在找回88元.”班长说:“你肯定搞错了.”小明说:“我把自己口袋里的18元一起当作找回的钱款了.”班长说:“这就对啦!”请根据上面的信息,求两种笔记本各买了多少本?
参考答案一、选择题(每题4分,共48分)1、B【分析】三角形的一个外角等于和它不相邻的两个内角的和.根据三角形的外角的性质计算即可.【详解】解:∵∠ACD是△ABC的一个外角,
∴∠ACD=∠B+∠A,
∵∠B=70°,∴∠A=∠ACD-∠B=125°-70°=55°,
故选:B.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.2、D【解析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论.【详解】解:当三边是2cm,2cm,5cm时,不符合三角形的三边关系;当三角形的三边是5cm,5cm,2cm时,符合三角形的三边关系,此时周长是5+5+2=12cm.故选:D.【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.3、A【分析】根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子,再根据降价和涨价列出现在的式子,得到方程组.【详解】解:两个月前买菜的情况列式:,现在萝卜的价格下降了10%,就是,排骨的价格上涨了20%,就是,那么这次买菜的情况列式:,∴方程组可以列为.故选:A.【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组.4、D【详解】解:根据极差的计算法则可得:x-(-1)=7或4-x=7,解得:x=6或x=-3.故选D5、C【解析】根据全等三角形的性质得到∠DBA=∠CAB=40°,根据角与角间的和差关系计算即可.【详解】∵△ABC≌△BAD,点A与点B,点C与点D是对应顶点,∠DBA=40°,∴∠DBA=∠CAB=40°,∴∠DAC=∠DAB﹣∠CAB=50°﹣40°=10°.故选C.【点睛】本题考查的是全等三角形的性质.掌握全等三角形的对应角相等是解题的关键.6、B【分析】先根据三角形三边关系得出第三边的取值范围,然后从选项中选择范围内的数即可.【详解】∵三角形两边长分别为5cm和16cm,∴第三边的取值范围为,即,而四个选项中只有15cm在内,故选:B.【点睛】本题主要考查三角形三边关系,掌握三角形三边关系是解题的关键.7、D【分析】三角形的一个外角大于任何一个和它不相邻的一个内角,根据以上定理逐个判断即可.【详解】解:A、∵∠HEC>∠AHD,∠AHD>∠B,
∴∠HEC>∠B,故本选项不符合题意;B、∵∠B+∠ACB+∠A=180°,
∴∠B+∠ACB=180°-∠A,故本选项不符合题意;
C、∵∠B+∠ACB+∠A=180°,
∴∠B+∠ACB<180°,故本选项不符合题意;D、∠B<∠ACD,故本选项符合题意;
故选:D.【点睛】本题考查了三角形内角和定理和三角形的外角性质的应用,能灵活运用定理进行推理是解题的关键.8、D【解析】根据幂的加减和幂的乘方计算法则判断即可.【详解】A.,该选项错误;B.,该选项错误;C.不是同类项不可合并,该选项错误;D.,该选项正确;故选D.【点睛】本题考查幂的加减和幂的乘方计算,关键在于熟练掌握基础运算方法.9、D【解析】利用余角的定义、三角形的三边关系、三角形的内角和及平行线的性质分别判断后即可确定正确的选项.【详解】A、同角(或等角)的余角相等,正确,是真命题;B、三角形的任意两边之和大于第三边,正确,是真命题;C、三角形的内角和为180°,正确,是真命题;D、两直线平行,同旁内角互补,故错误,是假命题,故选D.【点睛】考查了命题与定理的知识,解题的关键是了解余角的定义、三角形的三边关系、三角形的内角和及平行线的性质,难度不大.10、D【解析】试题分析:0指数次幂的性质:.由题意得,x≠-4,故选D.考点:0指数次幂的性质点评:本题属于基础应用题,只需学生熟练掌握0指数次幂的性质,即可完成.11、C【分析】根据分式的性质逐项进行判断即可得.【详解】A中的x不是分子、分母的因式,故A错误;B、分子、分母乘的数不同,故B错误;C、(a≠0),故C正确;D、分式的分子、分母同时减去同一个非0的a,分式的值改变,故D错误,故选C.【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.12、A【分析】根据演艺中心的点的坐标为(1,2),表示水宁阁的点的坐标为(-4,1)确定坐标原点的位置,建立平面直角坐标系,进而可确定其它点的坐标.【详解】解:根据题意可建立如下所示平面直角坐标系,A、中国馆的坐标为(-1,-2),故本选项正确;B、国际馆的坐标为(3,-1),故本选项错误;C、生活体验馆的坐标为(7,4),故本选项错误;D、植物馆的坐标为(-7,-4),故本选项错误.故选A.【点睛】此题考查坐标确定位置,解题的关键就是确定坐标原点和x,y轴的位置.二、填空题(每题4分,共24分)13、【详解】因为大正方形边长为,小正方形边长为m,所以剩余的两个直角梯形的上底为m,下底为,所以矩形的另一边为梯形上、下底的和:+m=.14、1【分析】根据正比例函数:正比例函数y=kx的定义条件是:k为常数且k≠0,可得答案.【详解】解:∵函数y=3xn﹣1是正比例函数,∴n﹣1=1,则n=1.故答案是:1.【点睛】本题主要考查正比例函数的概念,掌握正比例函数的概念是解题的关键.15、1【解析】试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.∵正多边形的一个内角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案为1.考点:多边形内角与外角.16、1°【分析】根据角平分线性质推出O为△ABC三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB,根据角平分线定义求出∠OBC+∠OCB,即可求出答案.【详解】:∵点O到AB、BC、AC的距离相等,∴OB平分∠ABC,OC平分∠ACB,∴,,∵∠A=70°,∴∠ABC+∠ACB=180°-70°=110°,∴,∴∠BOC=180°-(∠OBC+∠OCB)=1°;故答案为:1.【点睛】本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB的度数是解此题的关键.17、2【分析】先把变形为,再整体代入求解即可.【详解】∵,∴当时,原式.故答案为:2.【点睛】本题考查利用因式分解进行整式求值,解题的关键是利用完全平方公式进行因式分解.18、-【分析】只有符号不同的两个数,我们称这两个数互为相反数.【详解】解:的相反数为-.故答案为:-.【点睛】本题主要考查的是相反数的定义,属于基础题型.解决这个问题只要明确相反数的定义即可.三、解答题(共78分)19、(1),(t,t),45°;(2)△POE周长是一个定值为1,理由见解析;(3)①当t为(5-5)秒时,BP=BE;②能,PE的长度为2.【分析】(1)由勾股定理得出BP的长度;易证△BAP≌△PQD,从而得到DQ=AP=t,从而可以求出∠PBD的度数和点D的坐标.
(2)延长OA到点F,使得AF=CE,证明△FAB≌△ECB(SAS).得出FB=EB,∠FBA=∠EBC.再证明△FBP≌△EBP(SAS).得出FP=EP.得出EP=FP=FA+AP=CE+AP.即可得出答案;
(3)①证明Rt△BAP≌Rt△BCE(HL).得出AP=CE.则PO=EO=5-t.由等腰直角三角形的性质得出PE=PO=(5-t).延长OA到点F,使得AF=CE,连接BF,证明△FAB≌△ECB(SAS).得出FB=EB,∠FBA=∠EBC.证明△FBP≌△EBP(SAS).得出FP=EP.得出EP=FP=FA+AP=CE+AP.得出方程(5-t)=2t.解得t=5-5即可;
②由①得:当BP=BE时,AP=CE.得出PO=EO.则△POE的面积=OP2=5,解得OP=,得出PE=OP-=2即可.【详解】解:(1)如图1,
由题可得:AP=OQ=1×t=t,
∴AO=PQ.
∵四边形OABC是正方形,
∴AO=AB=BC=OC,∠BAO=∠AOC=∠OCB=∠ABC=90°.
∴BP=,
∵DP⊥BP,
∴∠BPD=90°.
∴∠BPA=90°-∠DPQ=∠PDQ.
∵AO=PQ,AO=AB,
∴AB=PQ.
在△BAP和△PQD中,,
∴△BAP≌△PQD(AAS).
∴AP=QD,BP=PD.
∵∠BPD=90°,BP=PD,
∴∠PBD=∠PDB=45°.
∵AP=t,
∴DQ=t
∴点D坐标为(t,t).
故答案为:,(t,t),45°.
(2)△POE周长是一个定值为1,理由如下:
延长OA到点F,使得AF=CE,连接BF,如图2所示.
在△FAB和△ECB中,,
∴△FAB≌△ECB(SAS).
∴FB=EB,∠FBA=∠EBC.
∵∠EBP=45°,∠ABC=90°,
∴∠ABP+∠EBC=45°.
∴∠FBP=∠FBA+∠ABP=∠EBC+∠ABP=45°.
∴∠FBP=∠EBP.
在△FBP和△EBP中,,
∴△FBP≌△EBP(SAS).
∴FP=EP.
∴EP=FP=FA+AP=CE+AP.
∴OP+PE+OE=OP+AP+CE+OE=AO+CO=5+5=1.
∴△POE周长是定值,该定值为1.
(3)①若BP=BE,
在Rt△BAP和Rt△BCE中,,
∴Rt△BAP≌Rt△BCE(HL).
∴AP=CE.
∵AP=t,
∴CE=t.
∴PO=EO=5-t.
∵∠POE=90°,
∴△POE是等腰直角三角形,
∴PE=PO=(5-t).
延长OA到点F,使得AF=CE,连接BF,如图2所示.
在△FAB和△ECB中,,
∴△FAB≌△ECB(SAS).
∴FB=EB,∠FBA=∠EBC.
∵∠EBP=45°,∠ABC=90°,
∴∠ABP+∠EBC=45°.
∴∠FBP=∠FBA+∠ABP=∠EBC+∠ABP=45°.
∴∠FBP=∠EBP.
在△FBP和△EBP中,,
∴△FBP≌△EBP(SAS).
∴FP=EP.
∴EP=FP=FA+AP=CE+AP.
∴EP=t+t=2t.
∴(5-t)=2t.
解得:t=5-5,
∴当t为(5-5)秒时,BP=BE.
②△POE的面积能等于△POE周长的一半;理由如下:
由①得:当BP=BE时,AP=CE.
∵AP=t,
∴CE=t.
∴PO=EO.
则△POE的面积=OP2=5,
解得:OP=,
∴PE=OP==2;
即△POE的面积能等于△POE周长的一半,此时PE的长度为2.【点睛】此题考查四边形综合题目,正方形的性质,等腰三角形的性质,全等三角形的性质与判定,勾股定理,证明三角形全等是解题的关键.20、(1)商场计划购进甲种手机20部,乙种手机30部.(2)当该商场购进甲种手机11部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.41万元.【分析】(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为11.1万元和两种手机的销售利润为2.1万元建立方程组求出其解即可.(2)设甲种手机减少a部,则乙种手机增加2a部,表示出购买的总资金,由总资金部超过16万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.【详解】解:(1)设商场计划购进甲种手机x部,乙种手机y部,根据题意,得解得:.答:商场计划购进甲种手机20部,乙种手机30部.(2)设甲种手机减少a部,则乙种手机增加2a部,根据题意,得,解得:a≤1.设全部销售后获得的毛利润为W元,由题意,得.∵k=0.07>0,∴W随a的增大而增大.∴当a=1时,W最大=2.41.答:当该商场购进甲种手机11部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.41万元.21、(1)证明见详解;(2)130°【分析】(1)由,得AD=BC,根据AAS可证明;(2)根据全等三角形的性质和三角形的外角的性质,即可得到答案.【详解】(1)∵点A、C、D、B在同一条直线上,,∴AC+CD=BD+CD,即AD=BC,在与中,∵∴(AAS)(2)∵,∴∴.【点睛】本题主要考查三角形全等的判定和性质定理,熟练掌握三角形全等的判定定理和性质定理是解题的关键.22、(1)A、B两种学具每套的售价分别是25和20元;(2),;购买45套B型学具所需费用最省钱,所需费用为900元.【解析】(1)设A种品牌的学具售价为x元,B种品牌的学具售价为y元,根据1套A学具和1套B学具的售价为45元,2套A学具和5套B学具的售价为150元,列出二元一次方程组解答即可;(2)①根据总花费=购买A型学具的费用+购买B型学具的费用,列出函数关系式即可;②分两种情况进行比较即可,第一种情况:由函数关系式可知a=30时花费已经最低,需要费用950元;第二种情况:购买45套B型学具需要900元.【详解】解:设A种品牌的学具售价为x元,B种品牌的学具售价为y元,根据题意有,,解之可得,所以A、B两种学具每套的售价分别是25和20元;因为,其中购买A型学具的数量为a,则购买费用,即函数关系式为:,;符合题意的还有以下情况:Ⅰ、以的方案购买,因为-5<0,所以时,w为最小值,即元;Ⅱ、由于受到购买A型学具数量的限制,购买A型学具30套w已是最小,所以全部购买B型学具45套,此时元元,综上所述,购买45套B型学具所需费用最省钱,所需费用为:900元.故答案为(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- ODM委托生产合同范本
- 个人承包农田种植的合同范本
- 上海市股权转让合同样本
- 交通运输企业贷款合同书及细则
- 车辆运输合同协议
- 采购服务合同范本
- 个人货车租赁合同标准文本
- 乡村民宿装饰装修合同
- 个人与企业借款合同
- 二手车买卖合同模板大全
- 湖北省武汉市2024-2025学年度高三元月调考英语试题(含答案无听力音频有听力原文)
- 商务星球版地理八年级下册全册教案
- 天津市河西区2024-2025学年四年级(上)期末语文试卷(含答案)
- 北京市北京四中2025届高三第四次模拟考试英语试卷含解析
- 2024年快递行业无人机物流运输合同范本及法规遵循3篇
- 地下商业街的规划设计
- 伤残抚恤管理办法实施细则
- 中国慢性冠脉综合征患者诊断及管理指南2024版解读
- 提升模组良率-六西格玛
- DL-T+5196-2016火力发电厂石灰石-石膏湿法烟气脱硫系统设计规程
- 2024-2030年中国产教融合行业市场运营态势及发展前景研判报告
评论
0/150
提交评论