2023届江西省赣州宁都县联考八年级数学第一学期期末学业质量监测试题含解析_第1页
2023届江西省赣州宁都县联考八年级数学第一学期期末学业质量监测试题含解析_第2页
2023届江西省赣州宁都县联考八年级数学第一学期期末学业质量监测试题含解析_第3页
2023届江西省赣州宁都县联考八年级数学第一学期期末学业质量监测试题含解析_第4页
2023届江西省赣州宁都县联考八年级数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列各式中,属于同类二次根式的是()A.与 B.与 C.与 D.与2.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式;也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,那么该三角形的面积为S=.已知△ABC的三边长分别为1,2,,则△ABC的面积为().A.1 B. C. D.3.如图,AO=,CO=DO,AD与BC交于E,∠O=40º,∠=25º,则∠的度数是(

)A. B. C. D.4.下列多项式中可以用平方差公式进行因式分解的有()①;②;③;④;⑤;⑥A.2个 B.3个 C.4个 D.5个5.在,-1,,这四个数中,属于负无理数的是()A. B.-1 C. D.6.若3x=15,3y=5,则3x-y等于()A.5 B.3 C.15 D.107.若把分式中的x和y都扩大到原来的3倍,那么分式的值()A.扩大为原来的3倍; B.缩小为原来的; C.缩小为原来的; D.不变;8.下列各图中,不是轴对称图形的是()A. B.C. D.9.等腰三角形的两边长分别为3cm,6cm,则该三角形的周长为()A.12cm B.15cm C.12cm或15cm D.以上都不对10.下列图形中,对称轴最多的图形是()A. B. C. D.11.已知,则下列不等式中正确的是()A. B. C. D.12.点关于轴的对称点的坐标是A. B. C. D.二、填空题(每题4分,共24分)13.如图,△ABC中,AB=AC,∠BAC=48°,∠BAC的平分线与线段AB的垂直平分线OD交于点O.连接OB、OC,将∠ACB沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_____度.14.如图,在Rt△ABC中,已知∠C=90°,∠CAB与∠CBA的平分线交于点G,分别与CB、CA边交于点D、E,GF⊥AB,垂足为点F,若AC=6,CD=2,则GF=______15.如图,一次函数和的图象交于点.则关于,的二元一次方程组的解是_________.16.如图,D是△ABC内部的一点,AD=CD,∠BAD=∠BCD,下列结论中,①∠DAC=∠DCA;②AB=AC;③BD⊥AC;④BD平分∠ABC.所有正确结论的序号是_____.17.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅有0.00000000034米,将数据0.00000000034用科学记数法表示为_______.18.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.三、解答题(共78分)19.(8分)已知:如图,在中,为的中点,交的平分线于点,过点作于交于交的延长线于.求证:.20.(8分)如图,AB=AC,AD=AE,∠BAD=∠CAE,求证:BE=CD.21.(8分)如图1,在长方形中,,,点在线段上以的速度由向终点运动,同时,点在线段上由点向终点运动,它们运动的时间为.(解决问题)若点的运动速度与点的运动速度相等,当时,回答下面的问题:(1);(2)此时与是否全等,请说明理由;(3)求证:;(变式探究)若点的运动速度为,是否存在实数,使得与全等?若存在,请直接写出相应的的值;若不存在,请说明理由.22.(10分)如图,是的边上的一点,.(1)求的度数;(2)若,求证:是等腰三角形.23.(10分)如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)24.(10分)如图,△ABC的三个顶点均在网格小正方形的顶点上,这样的三角形称为格点三角形,请你分别在图①、图②、图③的网格中画出一个和△ABC关于某条直线对称的格点三角形,并画出这条对称轴.25.(12分)问题探究:小明根据学习函数的经验,对函数的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题:在函数中,自变量x可以是任意实数;如表y与x的几组对应值:x01234y012321a______;若,为该函数图象上不同的两点,则______;如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:该函数有______填“最大值”或“最小值”;并写出这个值为______;求出函数图象与坐标轴在第二象限内所围成的图形的面积;观察函数的图象,写出该图象的两条性质.26.计算题:(写出解题步骤,直接写答案不得分)(1)-22++|-2|(2)+÷32+(-1)2020

参考答案一、选择题(每题4分,共48分)1、C【分析】化简各选项后根据同类二次根式的定义判断.【详解】A、与的被开方数不同,所以它们不是同类二次根式;故本选项错误;B、与的被开方数不同,所以它们不是同类二次根式;故本选项错误;C、与的被开方数相同,所以它们是同类二次根式;故本选项正确;D、是三次根式;故本选项错误.故选:C.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.2、A【分析】根据材料中公式将1,2,代入计算即可.【详解】解:∵△ABC的三边长分别为1,2,,∴S△ABC==1故选A.【点睛】此题考查的是根据材料中的公式计算三角形的面积,掌握三斜求积公式是解决此题的关键.3、A【解析】先证明△OAD≌△OBC,从而得到∠A=∠B,再根据三角形外角的性质求得∠BDE的度数,最后根据三角形的内角和定理即可求出∠BDE的度数.【详解】解:在△OAD和△OBC中,,∴△OAD≌△OBC(SAS)∴∠A=∠B=25°,∵∠BDE=∠O+∠A=40°+25°=65°,∴∠BED=180°-∠BDE-∠A=180°-65°-26°=90°,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA和HL,做题时,要根据已知条件结合图形进行思考.4、C【分析】根据平方差公式的结构特点,通过变形,然后得到答案.【详解】解:①,不符合平方差公式结构,故①错误;②,符合平方差公式结构,故②正确;③,符合平方差公式结构,故③正确;④,符合平方差公式结构,故④正确;⑤,符合平方差公式结构,故⑤正确;⑥,不符合平方差公式结构,故⑥错误;∴可以用平方差公式进行因式分解的有:②③④⑤,共4个;故选:C.【点睛】本题考查了平方差公式因式分解,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.5、D【分析】根据小于零的无理数是负无理数,可得答案.【详解】解:是负无理数,

故选:D.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.6、B【解析】试题分析:3x-y=3x÷3y=15÷5=3;故选B.考点:同底数幂的除法.7、B【解析】x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y.用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.【详解】用3x和3y代替式子中的x和y得:,则分式的值缩小成原来的.故选B.【点睛】解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.8、C【解析】试题解析:根据轴对称图形的意义可知:选项A.B.

D都是轴对称图形,而C不是轴对称图形;故选C.点睛:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.9、B【分析】分两种情况:底边为3cm,底边为6cm时,结合三角形三边的关系,根据三角形的周长公式,可得答案.【详解】底边为3cm,腰长为6cm,这个三角形的周长是3+6+6=15cm,底边为6cm,腰长为3cm,3+3=6,不能以6cm为底构成三角形;故答案为:B.【点睛】本题考查了等腰三角形的性质,利用了等腰三角形的性质,三角形三边的关系,分类讨论是解题关键.10、A【分析】先根据轴对称图形的定义确定各选项图形的对称轴条数,然后比较即可选出对称轴条数最多的图形.【详解】解:A、圆有无数条对称轴;

B、正方形有4条对称轴;

C、该图形有3条对称轴;

D、长方形有2条对称轴;

故选:A.【点睛】本题考查了轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.11、D【分析】根据不等式的性质解答即可.【详解】A.-2a<-2b,故该项错误;B.,故该项错误;C.2-a<2-b,故该项错误;D.正确,故选:D.【点睛】此题考查不等式的性质,熟记性质并熟练解题是关键.12、A【分析】再根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.【详解】解:∵∴M点关于x轴的对称点的坐标为,故选A.【点睛】此题考查关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律二、填空题(每题4分,共24分)13、1【分析】根据角平分线的定义求出∠BAO,根据等腰三角形的性质、三角形内角和定理求出∠ABC,根据线段垂直平分线的性质得到OA=OB,得到∠ABO=∠BAO,证明△AOB≌△AOC,根据全等三角形的性质、折叠的性质、三角形内角和定理计算,得到答案.【详解】解:∵∠BAC=48°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×48°=24°,∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣48°)=66°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=24°,∴∠OBC=∠ABC﹣∠ABO=66°﹣24°=42°,在△AOB和△AOC中,∴△AOB≌△AOC(SAS),∴OB=OC,∴∠OCB=∠OBC=42°,由折叠的性质可知,OE=CE,∴∠COE=∠OCB=42°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣42°﹣42°=1°,故答案为:1.【点睛】本题主要考查全等三角形的判定性质、垂直平分线的性质,等腰三角形的性质,三角形内角和定理,掌握全等三角形的性质、折叠的性质、垂直平分线的性质,角平分线的定义,三角形内角和定理是解题的关键.14、【分析】过G作GM⊥AC于M,GN⊥BC于N,连接CG,根据角平分线的性质得到GM=GM=GF,根据三角形的面积公式列方程即可得到结论.【详解】解:过G作GM⊥AC于M,GN⊥BC于N,连接CG,

∵GF⊥AB,∠CAB与∠CBA的平分线交于点G,

∴GM=GM=GF,

在Rt△ABC中,∠C=90°,

∴S△ACD=AC•CD=AC•GM+CD•GN,

∴6×2=6•GM+2×GN,

∴GM=,

∴GF=,

故答案为【点睛】本题考查了角平分线的性质,三角形的面积,正确的作出辅助线是解题的关键.15、【解析】根据一次函数的关系可得方程组的解为交点M的横纵坐标,把y=1代入求出M的坐标即可求解.【详解】把y=1代入,得解得x=-2∴关于,的二元一次方程组的解是故答案为.【点睛】此题主要考查一次函数与方程的关系,解题的关键是根据题意求出M点的坐标.16、①③④.【分析】根据等腰三角形的性质和判定定理以及线段垂直平分线的性质即可得到结论.【详解】解:∵AD=CD,∴∠DAC=∠DCA,故①正确;∵∠BAD=∠BCD,∴∠BAD+∠DAC=∠BCD+∠DCA,即∠BAC=∠BCA,∴AB=BC,故②错误;∵AB=BC,AD=DC,∴BD垂直平分AC,故③正确;∴BD平分∠ABC,故④正确;故答案为:①③④.【点睛】本题主要考查了线段垂直平分线的性质和判定以及等腰三角形的判定和性质.17、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000034=3.4×10-10,故答案为:3.4×10-10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、(,).【解析】解:作N关于OA的对称点N′,连接N′M交OA于P,则此时,PM+PN最小,∵OA垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M是ON的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M是ON的中点,∴OM=1.5,∴PM=,∴P(,).故答案为:(,).点睛:本题考查了轴对称﹣最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P的位置.三、解答题(共78分)19、见解析【分析】连接EB、EC,利用已知条件证明Rt△BEF≌Rt△CEG,即可得到BF=CG.【详解】证明:连接BE、EC,∵ED⊥BC,D为BC中点,∴BE=EC,∵EF⊥ABEG⊥AG,且AE平分∠FAG,∴FE=EG,在Rt△BFE和Rt△CGE中,∴Rt△BFE≌Rt△CGE(HL),∴BF=CG【点睛】本题考查了角平分线的性质及垂直平分线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.20、证明见解析【解析】先根据角的和差求出,再根据三角形全等的判定定理与性质即可得证.【详解】,即在与中,.【点睛】本题考查了三角形全等的判定定理与性质,熟记判定定理与性质是解题关键.21、解决问题(1)1;(2)全等;(3)见解析;变式探究:1或.【分析】解决问题(1)当t=1时,AP的长=速度×时间;(2)算出三角形的边,根据全等三角形的判定方法判定;(3)利用同角的余角相等证明∠DPQ=90°;变式探究若与全等,则有两种情况:①≌②≌,分别假设两种情况成立,利用对应边相等求出t值.【详解】解:解决问题(1)∵t=1,点P的运动速度为,∴AP=1×1=1cm;(2)全等,理由是:当t=1时,可知AP=1,BQ=1,又∵AB=4,BC=3,∴PB=3,在△ADP与△BPQ中,,∴△ADP≌△BPQ(SAS)(3)∵△ADP≌△BPQ,∴∠APD=∠PQB,∵∠PQB+∠QPB=90°,∴∠APD+∠QPB=90°,∴∠DPQ=90°,即DP⊥PQ.变式探究①若≌,则AP=BQ,即1×t=x×t,x=1;②若≌,AP=BP,即点P为AB中点,此时AP=2,t=2÷1=2s,AD=BQ=3,∴x=3÷2=cm/s.综上:当与全等时,x的取值为1或.【点睛】本题考查了全等三角形的判定和性质,注意在运动中对三角形全等进行分类讨论,从而得出不同情况下的点Q速度.22、(1)∠B=40°;(2)证明见解析.【分析】(1)由AD=BD,根据等边对等角的性质,可得∠B=∠BAD,又由三角形外角的性质,即可求得∠B的度数;(2)由∠BAC=70°,易求得∠C=∠BAC=70°,根据等角对等边的性质,可证得△ABC是等腰三角形.【详解】解:∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=∠ADC=40°;(2)证明:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.【点睛】本题主要考查了三角形的外角性质,等腰三角形的性质与判定,熟练掌握等腰三角形的性质与判定是解题的关键.23、点C到AB的距离约为14cm.【分析】通过勾股定理的逆定理来判断三角形ABC的形状,从而再利用三角形ABC的面积反求点C到AB的距离即可.【详解】解:过点C作CE⊥AB于点E,则CE的长即点C到AB的距离.在△ABC中,∵,,,∴,,∴,∴△ABC为直角三角形,即∠ACB=90°.……∵,∴,即,∴CE=14.4≈14.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论