2023届江苏省南通市海安市曲塘镇数学八上期末考试模拟试题含解析_第1页
2023届江苏省南通市海安市曲塘镇数学八上期末考试模拟试题含解析_第2页
2023届江苏省南通市海安市曲塘镇数学八上期末考试模拟试题含解析_第3页
2023届江苏省南通市海安市曲塘镇数学八上期末考试模拟试题含解析_第4页
2023届江苏省南通市海安市曲塘镇数学八上期末考试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.小颖和小亮在做一道关于整数减法的作业题,小亮将被减数后面多加了一个0,得到的差为750;小颖将减数后面多加了一个0,得到的差为-420,则这道减法题的正确结果为()A.-30 B.-20 C.20 D.302.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.73.解分式方程时,去分母变形正确的是()A. B.C. D.4.如图,在中,,,于,于,则三个结论①;②;③中,()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确5.一个三角形的两边长分别为和,且第三边长为整数,这样的三角形的周长最大值是()A. B. C. D.6.下列命题中为假命题的是()A.无限不循环小数是无理数 B.代数式的最小值是1C.若,则 D.有三个角和两条边分别相等的两个三角形一定全等7.已知直线y=2x经过点(1,a),则a的值为()A.a=2 B.a=-1 C.a=-2 D.a=18.某校八年级一班抽取5名女生进行800米跑测试,她们的成绩分别为75,85,90,80,90(单位:分),则这次抽测成绩的众数和中位数分别是()A.90,85 B.85,84 C.84,90 D.90,909.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,这两个对应三角形(如图)的对应点所具有的性质是().A.对应点所连线段都相等 B.对应点所连线段被对称轴平分C.对应点连线与对称轴垂直 D.对应点连线互相平行10.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5° C.20° D.22.5°11.在平面直角坐标系中,点P(﹣3,7)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.函数的自变量x的取值范围是()A. B.C.且 D.或二、填空题(每题4分,共24分)13.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.14.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,若(a﹣1)2+|b﹣|+=0,则这个三角形一定是_____.15.点P(-2,-3)到x轴的距离是_______.16.已知一个多边形的内角和是1620°,则这个多边形是_____边形.17.已知直线与直线相交于x轴上一点,则______.18.如图,△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于D,交AB于E.若BD+AC=3a,则AC=_________.(用含a的式子表示)三、解答题(共78分)19.(8分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式为,当x>100时,y与x的函数关系式为;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.20.(8分)如图,已知经过点M(1,4)的直线y=kx+b(k≠0)与直线y=2x-3平行.(1)求k,b的值;(2)若直线y=2x-3与x轴交于点A,直线y=kx+b交x轴于点B,交y轴于点C,求△MAC的面积.21.(8分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶7了小时时,两车相遇,求乙车速度.22.(10分)如图1,△ABC是边长为8的等边三角形,AD⊥BC下点D,DE⊥AB于点E(1)求证:AE=3EB;(2)若点F是AD的中点,点P是BC边上的动点,连接PE,PF,如图2所示,求PE+PF的最小值及此时BP的长;(3)在(2)的条件下,连接EF,若AD=,当PE+PF取最小值时,△PEF的面积是.23.(10分)等腰Rt△ABC中,∠BAC=90°,点A、点B分别是y轴、x轴上的两个动点,点C在第三象限,直角边AC交x轴于点D,斜边BC交y轴于点E.(1)若A(0,1),B(2,0),画出图形并求C点的坐标;(2)若点D恰为AC中点时,连接DE,画出图形,判断∠ADB和∠CDE大小关系,说明理由.24.(10分)如图,在平面直角坐标系中,,,,动点P从点O出发,以每秒2单位长度的速度沿线段运动;动点Q同时从点O出发,以每秒1单位长度的速度沿线段运动,其中一点先到达终点B时,另一点也随之停止运动,设运动时间为秒.(1)当时,已知PQ的长为,求的值.(2)在整个运动过程中,①设的面积为,求与的函数关系式.②当的面积为18时,直接写出的值.25.(12分)在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.(1)若∠BAC=50°,求∠AEB的度数;(2)求证:∠AEB=∠ACF;(3)试判断线段EF、BF与AC三者之间的等量关系,并证明你的结论.26.计算:(1)(2)(2x+y)2+(x-y)(x+y)-5x(x-y).

参考答案一、选择题(每题4分,共48分)1、D【分析】根据题意,设被减数为x,减数为y,则,然后根据二元一次方程组的解法,求出x、y的值,判断出这道减法题的算式是多少即可.【详解】解:设被减数为x,减数为y,则,解得,∴这道减法题的正确结果应该为:80-50=1.故选D.【点睛】此题主要考查了有理数的减法运算,以及二元一次方程组的求解方法,要熟练掌握.2、C【详解】试题解析:①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI和△ACI都是等腰三角形.故选C.考点:画等腰三角形.3、C【分析】分式方程去分母转化为整式方程,即可得到结果.【详解】解:去分母得:1-x=-1-3(x-2),

故选:C.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.4、B【分析】只要证明,推出,①正确;,由,推出,推出,可得,②正确;不能判断,③错误.【详解】在和中∴∴,,①正确∵∴∴∴,②正确在△BRP与△QSP中,只能得到,,不能判断三角形全等,因此只有①②正确故答案为:B.【点睛】本题考查了三角形的综合问题,掌握全等三角形的性质以及判定定理、平行线的性质以及判定定理是解题的关键.5、C【分析】根据三角形的三边关系求出第三边长的取值范围,再结合已知条件求出第三边长的最大整数值,即可求出三角形的周长最大值.【详解】解:∵一个三角形的两边长分别为和∴5-2<第三边长<5+2解得:3<第三边长<7∵第三边长为整数,∴第三边长可以为4、5、6∴第三边长的最大值为6∴三角形的周长最大值为2+5+6=13故选C.【点睛】此题考查的是根据三角形的两边长,求第三边的取值范围和求三角形的周长,掌握三角形的三边关系和三角形的周长公式是解决此题的关键.6、D【分析】根据无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理逐一分析即可.【详解】解:A.无限不循环小数是无理数,故本选项是真命题;B.代数式中根据二次根式有意义的条件可得解得:∵和的值都随x的增大而增大∴当x=2时,的值最小,最小值是1,故本选项是真命题;C.若,将不等式的两边同时乘a2,则,故本选项是真命题;D.有三个角和两条边分别相等的两个三角形不一定全等(两边必须是对应边),故本选项是假命题;故选D.【点睛】此题考查的是真假命题的判断,掌握无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理是解决此题的关键.7、A【分析】将点点(1,a)的坐标代入直线的解析式即可求得a的值;【详解】解:∵直线y=2x经过点P(1,a),

∴a=2×1=2;故选:A【点睛】本题考查了一次函数图象上的点的坐标特征:经过函数的某点一定在函数的图象上,并且一定满足该函数的解析式方程.8、A【分析】由题意直接根据众数和中位数的概念,结合题干数据求解即可.【详解】解:将这组数据按照从小到大的顺序排列为:75,80,1,90,90,则众数为90,中位数为1.故选:A.【点睛】本题考查众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9、B【分析】直接利用轴对称图形的性质得出对应点之间的关系.【详解】轴对称图形是把图形沿着某条直线对折,直线两旁的部分能够完全重合的图形,而这条直线叫做对称轴,由题意知,两图形关于直线对称,则这两图形的对应点连线被对称轴直线垂直平分,当图形平移后,两图形的对应点连线只被对称轴直线平分.故选B.【点睛】本题主要考查轴对称图形的性质,熟悉掌握性质是关键.10、A【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【详解】解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,

∴∠1=∠2,∠3=∠4,

∵∠ACE=∠A+∠ABC,

即∠1+∠2=∠3+∠4+∠A,

∴2∠1=2∠3+∠A,

∵∠1=∠3+∠D,

∴∠D=∠A=×30°=15°.

故选A.

【点睛】点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.11、B【解析】根据各象限内点的坐标特点解答即可.【详解】解:因为点P(﹣3,7)的横坐标是负数,纵坐标是正数,所以点P在平面直角坐标系的第二象限.故选:B.【点睛】此题主要考查了点的坐标,解答本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.12、A【详解】要使函数有意义,则所以,故选A.考点:函数自变量的取值范围.二、填空题(每题4分,共24分)13、1【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【详解】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=1,故答案是:1.考点:勾股定理;正方形的性质.14、直角三角形【分析】依据偶数次幂,绝对值,二次根式的非负性求得a、b、c的值,然后依据勾股定理的逆定理进行判断即可.【详解】∵(a﹣1)2+|b﹣|+=0,∴a=1,b=,c=2,∴a2+c2=b2,∴△ABC为直角三角形.故答案为:直角三角形.【点睛】本题主要考查偶数次幂,绝对值,二次根式的非负性以及勾股定理的逆定理,掌握偶数次幂,绝对值,二次根式的非负性是解题的关键.15、1【分析】根据点到x轴的距离等于纵坐标的绝对值解答.【详解】解:点P(−2,−1)到x轴的距离是1.故答案为1.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值是解题的关键.16、十一【详解】设所求多边形的边数是n,则(n-2)•180°=1620°,解得n=1.故答案为:十一17、【解析】首先求出一次函数与x轴交点,再把此点的坐标代入,即可得到k的值.【详解】直线与x轴相交,,,与x轴的交点坐标为,把代入中:,,故答案为:.【点睛】本题考查了两条直线的交点问题,两条直线与x轴的交点坐标,就是由这两条直线相对应的一次函数表达的y=1.18、a【分析】利用线段垂直平分线的性质得出AD=BD,然后根据三角形的外角的性质求得∠ADC=30°,最后由直角三角形中的30°角所对的直角边是斜边的一半可求出AC的长度.【详解】解:连接AD.

∵AB的垂直平分线交BC于D,交AB于E,

∴AD=BD,∴∠B=∠BAD=15°.∴∠ADC=30°,

又∠C=90°,∴AC=AD=BD=(3a-AC),∴AC=a.

故答案为:a.【点睛】本题考查了线段垂直平分线的性质以及含30°的直角三角形的性质,正确作出辅助线是解题的关键.三、解答题(共78分)19、解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)甲、乙单位购买本次足球赛门票分别为500张、200张.【分析】(1)根据题意可直接写出用x表示的总费用表达式;(2)根据方案一与方案二的函数关系式分类讨论;(3)假设乙单位购买了a张门票,那么甲单位的购买的就是700-a张门票,分别就乙单位按照方案二:①a不超过100;②a超过100两种情况讨论a取值的合理性.从而确定求甲、乙两单位各购买门票数.【详解】解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)因为方案一y与x的函数关系式为y=60x+10000,∵x>100,方案二的y与x的函数关系式为y=80x+2000;当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)设甲、乙单位购买本次足球赛门票数分别为a张、b张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:b≤100或b>100.①b≤100时,乙公司购买本次足球赛门票费为100b,解得不符合题意,舍去;②当b>100时,乙公司购买本次足球赛门票费为80b+2000,解得符合题意答:甲、乙单位购买本次足球赛门票分别为500张、200张.20、(3)k=3,b=3;(3)3.2【分析】(3)先根据两直线平行得到k=3,然后把M点坐标代入y=3x+b求出b即可;(3)求得A、B、C的坐标,然后根据S△MAC=S△AMB﹣S△ABC求得即可.【详解】(3)∵直线y=kx+b(k≠0)与直线y=3x-3平行,∴k=3.∵直线y=3x+b经过点M(3,4),∴3×3+b=4,∴b=3.∴k=3,b=3(3)连接AC,AM,在直线y=3x-3中,当y=0时,3x–3=0,解得x=3.2.∴点A坐标是(3.2,0)在y=3x+3中,当y=0时,3x+3=0,解得x=-3.当x=0时,y=3,∴点B的坐标是(-3,0),点C的坐标是(0,3).∴AB=OA+OB=3.2+=3.2∴S△MAC=S△AMB-S△ABC=×3.2×4-×3.2×3=3.2【点睛】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.21、(1)y=(2)75(千米/小时)【分析】(1)先根据图象和题意知道,甲是分段函数,所以分别设0<x≤6时,y=k1x;6<x≤14时,y=kx+b,根据图象上的点的坐标,利用待定系数法可求解.

(2)注意相遇时是在6-14小时之间,求交点时应该套用甲中的函数关系式为y=-75x+1050,直接把x=7代入即可求相遇时y的值,再求速度即可.【详解】(1)①当0<x≤6时,设y=k1x把点(6,600)代入得k1=100所以y=100x;②当6<x≤14时,设y=kx+b∵图象过(6,600),(14,0)两点∴6解得k=-∴y=−75x+1050∴y=(2)当x=7时,y=−75×7+1050=525,V乙=5257=75(千米/小时22、(1)见解析;(1)PE+PF的最小值=6,BP=1;(3)1【分析】(1)解直角三角形求出BE,AE即可判断.(1)如图1中,延长DF到H,使得DH=DF,连接EF,连接EH交BC于点P,此时PE+PF的值最小.证明∠HEF=90°,解直角三角形求出EH即可解决问题.(3)证明△PBE是等边三角形,求出PE,EF即可解决问题.【详解】(1)证明:如图1中,∵△ABC是等边三角形,∴AB=BC=AC=8,∠B=∠BAC=60°∵AD⊥BC,∴BD=DC=4,∵DE⊥AB,∴∠DEB=90°,∠BDE=30°,∴BE=BD=1,∴AE=AB﹣BE=8﹣1=6,∴AE=3BE.(1)解:如图1中,延长DF到H,使得DH=DF,连接EF,连接EH交BC于点P,此时PE+PF的值最小.∵∠AED=90°,AF=FD,∴EF=AF=DF,∵DF=DH,∴DE=DF=DH,∴∠FEH=90°,∵在Rt△ABD中,∠ADB=90°,BD=4,∠B=60°,∴AD=BD•tan60°=4,∵∠BAD=∠BAC=30°,FE=FA,∴∠FEA=∠FAE=30°,∴∠EFH=60°,∠H=30°,∵FH=AD=4,∴EH=FH•cos30°=6,∴PE+PF的最小值=PE+PH=EH=6,∵PD=DH•sin30°=1,∴BP=BD﹣PD=1.(3)解:如图1中,∵BE=BP=1,∠B=60°,∴△BPE是等边三角形,∴PE=1,∵∠PEF=90°,EF=AF=DF=1,∴S△PEF=•PE•EF=×1×1=1.【点睛】本题考查了等边三角形的性质、勾股定理、轴对称的知识以及解直角三角形,熟悉相关性质是解题的关键.23、(1)作图见解析,C(﹣1,﹣1);(2)∠ADB=∠CDE.理由见解析.【分析】(1)过点C作CF⊥y轴于点F通过证明△ACF≌△BAO得CF=OA=1,AF=OB=2,求得OF的值,就可以求出C的坐标;(2)过点C作CG⊥AC交y轴于点G,先证明△ACG≌△BAD就可以得出CG=AD=CD,∠DCE=∠GCE=45°,再证明△DCE≌△GCE就可以得出结论.【详解】解:(1)过点C作CF⊥y轴于点F,如图1所示:,∴∠AFC=90°,∴∠CAF+∠ACF=90°.∵△ABC是等腰直角三角形,∠BAC=90°,∴AC=AB,∠CAF+∠BAO=90°,∠AFC=∠BAC,∴∠ACF=∠BAO.在△ACF和△BAO中,∵,∴△ACF≌△BAO(AAS),∴CF=OA=1,AF=OB=2,∴OF=1,∴C(﹣1,﹣1);(2)∠ADB=∠CDE.理由如下:证明:过点C作CG⊥AC交y轴于点G,如图2所示:,∴∠ACG=∠BAC=90°,∴∠AGC+∠GAC=90°.∵∠CAG+∠BAO=90°,∴∠AGC=∠BAO.∵∠ADO+∠DAO=90°,∠DAO+∠BAO=90°,∴∠ADO=∠BAO,∴∠AGC=∠ADO.在△ACG和△BAD中,,∴△ACG≌△BAD(AAS),∴CG=AD=CD.∵∠ACB=∠ABC=45°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠CGE,∴∠ADB=∠CDE.【点睛】本题考查了全等三角形的判定与性质的运用,等腰直角三角形的性质的运用,直角三角形的性质的运用,解答时证明三角形全等是关键.24、(1);(2)①与函数关系式为,②当的面积为18时,或1.【分析】(1)先根据t的范围分析出Q点在OC上,P在OA上,用t表示出OQ和OP的长,根据勾股定理列式求出t的值;(2)①分三种情况讨论,根据t的不同范围,先用t表示出线段长,再表示出面积;②根据①所列的式子,令面积等于18,求出符合条件的t的值.【详解】(1)当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论