版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列各数中是无理数的是()A. B. C. D.2.如图,直线y=kx(k为常数,k≠0)经过点A,若B是该直线上一点,则点B的坐标可能是()A.(-2,-1) B.(-4,-2) C.(-2,-4) D.(6,3)3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.4.在的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A. B. C. D.5.给出下列数:,其中无理数有()A.1个 B.2个 C.3个 D.4个6.下列各式中属于最简二次根式的是()A. B. C. D.7.下列图形是轴对称图形的是()A. B. C. D.8.如果把分式中的x,y同时扩大为原来的4倍,现么该分式的值()A.不变 B.扩大为原来的4倍C.缩小为原来的 D.缩小为原来的9.如图,AD//BC,点E是线段AB的中点,DE平分,BC=AD+2,CD=7,则的值等于()A.14 B.9 C.8 D.510.若实数、满足,且,则一次函数的图象可能是()A. B. C. D.二、填空题(每小题3分,共24分)11.的绝对值是________.12.若,则可取的值为__________.13.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.14.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.15.关于x、y的方程组的解是,则n﹣m的值为_____.16.游泳者在河中逆流而上,于桥A下面将水壶遗失被水冲走,继续前游30分钟后他发现水壶遗失,于是立即返回追寻水壶,在桥A下游距桥1.2公里的桥B下面追到了水壶,那么该河水流的速度是_________.17.如图,△ABC≌△DCB,∠DBC=35°,则∠AOB的度数为_____.18.商店以每件13元的价格购进某商品100件,售出部分后进行了降价促销,销售金额y(元)与销售量x(件)的函数关系如图所示,则售完这100件商品可盈利______元.三、解答题(共66分)19.(10分)如图1,在中,,平分,且点在的垂直平分线上.(1)求的各内角的度数.(2)如图2,若是边上的一点,过点作直线的延长线于点,分别交边于点,的延长线于点,试判断的形状,并证明你的结论.20.(6分)已知,如图A、C、F、D在同一条直线上,AF=DC,,AB=DE.求证:(1);(2).21.(6分)如图,△ABC的顶点坐标分别为A(2,3),B(1,1),C(3,2).(1)将△ABC向下平移4个单位长度,画出平移后的△ABC;(2)画出△ABC关于y轴对称的△ABC.并写出点A,B,C的坐标.22.(8分)(阅读理解)利用完全平方公式,可以将多项式变形为的形式,我们把这样的变形方法叫做多项式的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:(问题解决)根据以上材料,解答下列问题:(1)用多项式的配方法将多项式化成的形式;(2)用多项式的配方法及平方差公式对多项式进行分解因式;(3)求证:不论,取任何实数,多项式的值总为正数.23.(8分)按要求计算:(1)计算:(2)因式分解:①②(3)解方程:24.(8分)如图,在平面网格中每个小正方形的边长为1.(1)线段CD是线段AB经过怎样的平移后得到的?(2)线段AC是线段BD经过怎样的平移后得到的?25.(10分)若在一个两位正整数N的个位数与十位数字之间添上数字5,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数”为354;若将一个两位正整数M加5后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数”为1.(1)26的“至善数”是,“明德数”是.(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被45整除;26.(10分)(1)分解因式:.(2)分解因式:;(3)解方程:.
参考答案一、选择题(每小题3分,共30分)1、B【分析】分别根据无理数的定义即可判定选择项.【详解】A、是有限小数,是有理数,不是无理数;B、是无理数;C、是分数,是有理数,不是无理数;D、是整数,是有理数,不是无理数;故选:B.【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2、C【分析】先根据点A的坐标求出k的值,从而可得直线的解析式,再逐项判断即可.【详解】由平面直角坐标系得:点A的坐标为将代入直线得:,解得因此,直线的解析式为A、令,代入直线的解析式得,则点不符题意B、令,代入直线的解析式得,则点不符题意C、令,代入直线的解析式得,则点符合题意D、令,代入直线的解析式得,则点不符题意故选:C.【点睛】本题考查了正比例函数的图象与性质,依据图象求出直线的解析式是解题关键.3、B【分析】先由数轴观察a、b、c的正负和大小关系,然后根据不等式的基本性质对各项作出正确判断.【详解】由数轴可以看出a<b<0<c,因此,A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴,故选项错误.故选B.【点睛】此题主要考查了不等式的基本性质及实数和数轴的基本知识,比较简单.4、D【解析】直接利用轴对称图形的定义判断得出即可.【详解】解:A.是轴对称图形,不合题意;B.是轴对称图形,不合题意;C.是轴对称图形,不合题意;D.不是轴对称图形,符合题意;故选:D.【点睛】本题主要考查轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.5、B【分析】根据无理数的定义进行判断即可.【详解】根据无理数的定义:无理数是无限不循环小数,不能表示为两个整数的比.由此可得,中,是无理数故答案为:B.【点睛】本题主要考查了无理数的基本概念,掌握无理数的性质以及判断方法是解题的关键.6、A【分析】找到被开方数中不含分母的,不含能开得尽方的因数或因式的式子即可.【详解】解:A、是最简二次根式;B、,被开方数含分母,不是最简二次根式;C、,被开方数含能开得尽方的因数,不是最简二次根式;D、,被开方数含分母,不是最简二次根式.故选:A.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.7、B【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;B、有六条对称轴,是轴对称图形,故本选项正确;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误.故选B.8、D【分析】根据分式的性质可得==•,即可求解.【详解】解:x,y同时扩大为原来的4倍,则有==•,∴该分式的值是原分式值的,故答案为D.【点睛】本题考查了分式的基本性质,给分子分母同时乘以一个整式(不为0),不可遗漏是解答本题的关键.9、A【分析】延长DE,CB交于点F,通过ASA证明,则有,然后利用角平分线的定义得出,从而有,则通过和解出BC,AD的值,从而答案可解.【详解】延长DE,CB交于点F∵点E是线段AB的中点,在和中,∵DE平分解得故选:A.【点睛】本题主要考查全等三角形的判定及性质,角平分线的定义,等腰三角形的性质,能够找出是解题的关键.10、A【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】解:因为实数k、b满足k+b=0,且k>b,
所以k>0,b<0,
所以它的图象经过一、三、四象限,
故选:A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.二、填空题(每小题3分,共24分)11、【分析】根据绝对值的意义,即可得到答案.【详解】解:,故答案为:.【点睛】本题考查了绝对值的意义,解题的关键是熟记绝对值的意义.12、或2【分析】直接利用零指数幂的性质以及有理数的乘方运算法则得出答案.【详解】解:∵,
∴当1-3x=2时,x=,原式=()2=1,
当x=2时,原式=11=1.
故答案为:或2.【点睛】本题考查零指数幂的性质以及有理数的乘方运算,正确掌握运算法则是解题关键.13、【详解】试题分析:连接DB,BD与AC相交于点M,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.∵∠DAB=60°,∴△ADB是等边三角形.∴DB=AD=1,∴BM=∴AM=∴AC=.同理可得AE=AC=()2,AG=AE=()3,…按此规律所作的第n个菱形的边长为()n-114、1.【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【详解】过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=1.故答案为1.【点睛】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.15、1【分析】根据方程组的解满足方程组,把解代入,可得关于m、n的二元一次方程组,求解该方程组即可得答案.【详解】把代入,得,求解关于m、n的方程组可得:,故.故答案为:1.【点睛】本题考查二元一次方程组,求解时常用代入消元法或加减消元法,其次注意计算仔细即可.16、0.01km/min【解析】解:设该河水流的速度是每小时x公里,游泳者在静水中每小时游a公里.由题意,有=,解得x=1.1.经检验,x=1.1是原方程的解.1.1km/h=0.01km/min.故答案为:0.01km/min.点睛:本题考查分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.本题需注意顺流速度与逆流速度的表示方法.另外,本题求解时设的未知数a,在解方程的过程中抵消.这种方法在解复杂的应用题时常用来帮助分析数量关系,便于解题.17、70°.【分析】根据全等三角形对应角相等可得∠ACB=∠DBC,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵△ABC≌△DCB,∠DBC=35°,∴∠ACB=∠DBC=35°,∴∠AOB=∠ACB+∠DBC=35°+35°=70°.故答案为70°.【点睛】本题考查了全等三角形对应角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和,熟记性质是解题的关键.18、1.【分析】设降价段图象的表达式为:y=kx+b,将(40,800)、(80,300)代入上式并解得k的值,即每件售价;从图象看,售出80件即收回成本,利润即为剩下的20件的售出金额,即可求解.【详解】设降价段图象的表达式为:y=kx+b,将(40,800)、(80,1300)代入上式得:并解得:,即每件售价元;从图象看,售出80件即收回成本,利润即为剩下的20件的售出金额,即为:20=1.故答案为:1.【点睛】此题为一次函数的应用,渗透了函数与方程的思想,关键是求降价后每件的价格.三、解答题(共66分)19、(1),,;(2)是等腰三角形,证明见解析.【分析】(1)根据等腰三角形的性质和垂直平分线的性质可得,设∠,利用三角形的内角和定理列出方程即可求出x的值,从而求出的各内角的度数;(2)利用ASA即可证出,从而得出结论.【详解】解:(1)∵,∴.∵平分,∴.∵点在的垂直平分线上,∴,∴,∴.设∠,∴,∴,∴,∴,,.(2)是等腰三角形.证明:∵平分,∴.∵,∴.在△EBH和△NBH中∴,∴,∴是等腰三角形.【点睛】此题考查的是等腰三角形的性质及判定、垂直平分线的性质、三角形的内角和定理和全等三角形的判定及性质,掌握等边对等角、等腰三角形的定义、垂直平分线的性质、三角形的内角和定理、全等三角形的判定及性质和方程思想是解决此题的关键.20、(1)证明见解析;(2)证明见解析【分析】(1)先证明AC=DF,∠A=∠D,由“SAS”可证△ABC≌△DEF;(2)由全等三角形的性质可得∠ACB=∠DFE,可证BC∥EF;【详解】解:(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+CF=CD+CF,即AC=DF,在△ABC和△DEF,∴△ABC≌△DEF(SAS);(2)由(1)中可知:∵△ABC≌△DEF∴∠ACB=∠DFE,∴.【点睛】本题考查了全等三角形的判定和性质、平行线的判定及性质等,熟练掌握三角形全等的判定方法及平行线的性质和判定是解决本题的关键.21、(1)见解析;(2)作图见解析,【分析】根据三角形在坐标中的位置,将每个点分别平移,即可画出平移后的图象.【详解】解:(1)、(2)如图:∴点A,B,C的坐标分别为:,,.【点睛】本题考查了平移,轴对称的知识,解题的关键是熟练掌握作图的方法.22、(1),见解析;(2),见解析;(3)见解析【分析】(1)根据题中给出的例题,利用完全平方公式进行配方即可;(2)根据题中给出的例题,利用完全平方公式进行配方后,再利用平方差公式进行因式分解即可;(3)利用配方法将多项式化成后,再结合平方的非负性即可求证.【详解】解:(1)(2)由(1)得.(3),,不论,取任何实数,多项式的值总为正数.【点睛】本题考查了完全平方公式和公式法因式分解,解题的关键是读懂题中给出的例题,熟知完全平方公式和因式分解的方法.23、(1)1;(2)①(2a+5b)(2a﹣5b);②﹣3xy2(x﹣y)2;(3)【分析】(1)根据二次根式的乘法公式、绝对值的性质、零指数幂的性质和负指数幂的性质计算即可;(2)①利用平方差公式因式分解即可;②先提取公因式,然后利用完全平方公式因式分解即可;(3)根据解分式方程的一般步骤解分式方程即可.【详解】(1)解:=1.(2)①原式=(2a+5b)(2a﹣5b);②原式=﹣3xy2(x2﹣2xy+y2)=﹣3xy2(x﹣y)2.(3)解:去分母得,x﹣1+2(x﹣2)=﹣3,3x﹣5=﹣3,解得,检验:把代入x﹣2≠0,所以是原方程的解.【点睛】此题考查的是实数的混合运算、因式分解和解分式方程,掌握二次根式的乘法公式、绝对值的性质、零指数幂的性质、负指数幂的性质、利用提公因式法、公式法因式分解和解分式方程是解决此题的关键.24、(1)见解析;(2)见解析【解析】试题分析:(1)根据图形,找到A、C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度商业地产项目地下车位使用权转让合同4篇
- 2025产业园项目幕墙二次深化设计、监理及验收服务合同2篇
- 2024年缝纫设备及相关技术咨询合同
- 2025年度新能源汽车买卖及售后服务合同4篇
- 2025年度智能车库门购销安装一体化服务合同4篇
- 2025年度智能安防监控系统设计与实施合同4篇
- 2024铁路信号设备更新改造工程合同文本3篇
- 中国医用呼吸机行业市场调查研究及投资战略咨询报告
- 中国家居百货行业市场调查研究及投资前景预测报告
- 2025年度个人房屋抵押贷款合同终止协议4篇
- C及C++程序设计课件
- 带状疱疹护理查房
- 公路路基路面现场测试随机选点记录
- 平衡计分卡-化战略为行动
- 国家自然科学基金(NSFC)申请书样本
- 幼儿教师干预幼儿同伴冲突的行为研究 论文
- 湖南省省级温室气体排放清单土地利用变化和林业部分
- 材料设备验收管理流程图
- 培训机构消防安全承诺书范文(通用5篇)
- (完整版)建筑业10项新技术(2017年最新版)
- 第8期监理月报(江苏版)
评论
0/150
提交评论