2023届湖南省益阳市桃江县数学八年级第一学期期末综合测试模拟试题含解析_第1页
2023届湖南省益阳市桃江县数学八年级第一学期期末综合测试模拟试题含解析_第2页
2023届湖南省益阳市桃江县数学八年级第一学期期末综合测试模拟试题含解析_第3页
2023届湖南省益阳市桃江县数学八年级第一学期期末综合测试模拟试题含解析_第4页
2023届湖南省益阳市桃江县数学八年级第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,四边形中,,,将四边形沿对角线折叠,点恰好落在边上的点处,,则的度数是()A.15° B.25° C.30° D.40°2.二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣23.等腰三角形的周长为,其中一边长为,则该等腰三角形的腰长为()A. B.或 C. D.4.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为(

)A.﹣2

B.2

C.0

D.15.下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A. B. C. D.6.计算:的结果是()A. B. C. D.7.如图,三条公路把、、三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A.在、两边高线的交点处B.在、两边中线的交点处C.在、两内角平分线的交点处D.在、两边垂直平分线的交点处8.相距千米的两个港口、分别位于河的上游和下游,货船在静水中的速度为千米/时,水流的速度为千米/时,一艘货船从港口出发,在两港之间不停顿地往返一次所需的时间是()A.小时 B.小时 C.小时 D.小时9.如图,在中,平分交于点,平分,,交于点,若,则()A.75 B.100 C.120 D.12510.在下列所示的四个图形中,属于轴对称图案的有()A. B. C. D.11.下列运算中正确的是()A.B.C.D.12.已知,,则与的大小关系为()A. B. C. D.不能确定二、填空题(每题4分,共24分)13.如图,等边的边长为8,、分别是、边的中点,过点作于,连接,则的长为_______.14.等腰三角形一腰上的高与另一腰的夹角为,则其顶角为________.15.若点M(a﹣3,a+4)在x轴上,则点M的坐标是______.16.如图,中,一内角和一外角的平分线交于点连结,_______________________.

17.计算:.18.函数中,自变量x的取值范围是▲.三、解答题(共78分)19.(8分)如图,,,(1)求证:;(2)连接,求证:.20.(8分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.21.(8分)(1)计算:(11a3﹣6a1+3a)÷3a﹣1;(1)因式分解:﹣3x3+6x1y﹣3xy1.22.(10分)如图,等边△ABC的边AC,BC上各有一点E,D,AE=CD,AD,BE相交于点O.(1)求证:△ABE≌△CAD;(2)若∠OBD=45°,求∠ADC的度数.23.(10分)化简求值(1)求的值,其中,;(2)求的值,其中.24.(10分)如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.(1)分别求出这两个函数的解析式;(2)求的面积;(3)点在轴上,且是等腰三角形,请直接写出点的坐标.25.(12分)直线与直线垂直相交于,点在射线上运动,点在射线上运动,连接.(1)如图1,已知,分别是和角的平分线,①点,在运动的过程中,的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出的大小.②如图2,将沿直线折叠,若点落在直线上,记作点,则_______;如图3,将沿直线折叠,若点落在直线上,记作点,则________.(2)如图4,延长至,已知,的角平分线与的角平分线交其延长线交于,,在中,如果有一个角是另一个角的倍,求的度数.26.已知,求,的值.

参考答案一、选择题(每题4分,共48分)1、B【分析】由题意利用互余的定义和平行线的性质以及轴对称的性质,进行综合分析求解.【详解】解:∵∠A′BC=20°,,∴∠BA′C=70°,∴∠DA′B=110°,∴∠DAB=110°,∵,∴∠ABC=70°,∴∠ABA′=∠ABC-∠A′BC=70°-20°=50°,∵∠A′BD=∠ABD,∴∠A′BD=∠ABA′=25°.故选:B.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变进行分析.2、D【分析】根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.【详解】由题意,得2x+4≥0,解得x≥-2,故选D.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.3、C【分析】此题分为两种情况:4cm是等腰三角形的底边或4cm是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】解:若4cm为等腰三角形的腰长,则底边长为18-4-4=10(cm),4+4=8<10,不符合三角形的三边关系;

若4cm为等腰三角形的底边,则腰长为(18-4)÷2=7(cm),此时三角形的三边长分别为7cm,7cm,4cm,符合三角形的三边关系;

∴该等腰三角形的腰长为7cm,

故选:C.【点睛】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边.4、B【解析】根据题意得:(x+m)(2−x)=2x−x2+2m−mx,∵x+m与2−x的乘积中不含x的一次项,∴m=2;故选B.5、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,也是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不合题意;C、是轴对称图形,也是中心对称图形.故C选项不合题意;D、不是轴对称图形,也不是中心对称图形,故D选项符合题意;故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.6、C【分析】根据积的乘方的运算法则和单项式乘除法的运算法则计算即可.【详解】故选:C.【点睛】本题主要考查积的乘方和单项式的乘除法,掌握积的乘方的运算法则和单项式乘除法的运算法则是解题的关键.7、C【解析】试题解析:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选C.考点:角平分线的性质.8、D【分析】先分别算出顺水和逆水的速度,再根据时间=路程速度,算出往返时间.【详解】依据顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度,则顺水速度为,时间为,逆水速度为,时间为,所以往返时间为.故选D【点睛】本题主要考查了列代数式,熟练掌握顺水逆水速度,以及时间、路程、速度三者直接的关系是解题的关键.9、B【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE1+CF1=EF1.【详解】∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE1+CF1=EF1=2.故选:B【点睛】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用.10、D【分析】根据轴对称图形的定义:经过某条直线(对称轴)对折后,图形完全重叠,来判断各个选项可得.【详解】轴对称图形是经过某条直线(对称轴)对折后,图形完全重叠满足条件的只有D故选:D【点睛】本题考查轴对称的判定,注意区分轴对称图形和中心对称图形的区别.11、C【分析】A、根据同底数幂的除法法则:底数不变,只把指数相减,得出结果,作出判断;B、分子分母中不含有公因式,故不能约分,可得本选项错误;C、把分子利用完全平方公式分解因式,分母利用平方差公式分解因式,找出分子分母的公因式,分子分母同时除以,约分后得到最简结果,即可作出判断;D、分子分母中不含有公因式,故不能约分,可得本选项错误.【详解】解:A、,本选项错误;B、分子分母没有公因式,不能约分,本选项错误;C、,本选项正确;D、分子分母没有公因式,不能约分,本选项错误,故选:C.【点睛】本题主要考查了分式的化简,熟练掌握分式的基本性质是解题关键.12、A【分析】通过“分母有理化”对进行化简,进而比较大小,即可得到答案.【详解】∵=,,∴.故选A.【点睛】本题主要考查二次根式的化简,掌握二次根式的分母有理化,是解题的关键.二、填空题(每题4分,共24分)13、【分析】连接,根据三角形的中位线的性质得到,,求得,解直角三角形即可得到结论.【详解】解:连接,、分别是、边的中点,等边的边长为8,,,,,,,,,,故答案为:.【点睛】本题考查了等边三角形的性质,含角的直角三角形的性质,三角形的中位线的性质,勾股定理正确的作出辅助线是解题的关键.14、135°或45°【分析】根据题意可知等腰三角形需要分类讨论,分为锐角三角形和钝角三角形,画出图形解答即可.【详解】解:①如图1所示,当等腰三角形是锐角三角形时,根据题意,∠ABM=45°,又∵BM是AC边上的高,∴∠AMB=90°,∴∠A=90°-45°=45°,②如图2,当等腰三角形是钝角三角形时,根据题意,∠DEN=45°,∵EN是DF边上的高∴∠N=90°,∴∠EDN=90°-45°=45°,∴∠EDF=180°-45°=135°故顶角为:135°或45°.【点睛】本题考查了等腰三角形的分类讨论问题,解题的关键是能够画出图形,根据数形结合的思想求出答案.15、(-7,0)【分析】先根据x轴上的点的坐标的特征求得a的值,从而可以得到结果.【详解】由题意得a-3=0,a=3,则点M的坐标是(-7,0).【点睛】解题的关键是熟练掌握x轴上的点的纵坐标为0,y轴上的点的横坐标为0.16、1°【分析】过D作,DF⊥BE于F,DG⊥AC于G,DH⊥BA,交BA延长线于H,由BD平分∠ABC,可得∠ABD=∠CBD,DH=DF,同理CD平分∠ACE,∠ACD=∠DCF=,DG=DF,由∠ACE是△ABC的外角,可得2∠DCE=∠BAC+2∠DBC①,由∠DCE是△DBC的外角,可得∠DCE=∠CDB+∠DBC②,两者结合,得∠BAC=2∠CDB,则∠HAC=180º-∠BAC,在证AD平分∠HAC,即可求出∠CAD.【详解】过D作,DF⊥BE于F,DG⊥AC于G,DH⊥BA,交BA延长线于H,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC,DH=DF,∵CD平分∠ACE,∴∠ACD=∠DCF=∠ACE,DG=DF,∵∠ACE是△ABC的外角,∴∠ACE=∠BAC+∠ABC,∴2∠DCE=∠BAC+2∠DBC①,∵∠DCE是△DBC的外角,∴∠DCE=∠CDB+∠DBC②,由①②得,∠BAC=2∠CDB=2×24º=48º,∴∠HAC=180º-∠BAC=180º-48º=132º,∵DH=DF,DG=DF,∴DH=DG,∵DG⊥AC,DH⊥BA,AD平分∠HAC,∠CAD=∠HAD=∠HAC=×132º=1º.故答案为:1.【点睛】本题考查角的求法,关键是掌握点D为两角平分线交点,可知AD为角平分线,利用好外角与内角的关系,找到∠BAC=2∠CDB是解题关键.17、1【解析】试题分析:先化为同分母通分,再约分:.18、.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析.【分析】(1)由,则∠AED=∠BEC,即可证明△ADE≌△BCE,即可得到AD=BC;(2)连接DC,由(1)得,,则,再根据,即可得到答案.【详解】(1)证明:∵∴在和中,∵∴≌(),∴;(2)如图,连接,由≌,得,∵,∴,∵,∴.【点睛】本题考查了全等三角形的判定与性质,以及等腰三角形性质,正确找出三角形全等的条件是解题的关键.20、结论:(1)60;(2)AD=BE;应用:∠AEB=90°;AE=2CM+BE;【详解】试题分析:探究:(1)通过证明△CDA≌△CEB,得到∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°-60°=60°;(2)已证△CDA≌△CEB,根据全等三角形的性质可得AD=BE;应用:通过证明△ACD≌△BCE,得到AD=BE,∠BEC=∠ADC=135°,所以∠AEB=∠BEC-∠CED=135°-45°=90°;根据等腰直角三角形的性质可得DE=2CM,所以AE=DE+AD=2CM+BE.试题解析:解:探究:(1)在△CDA≌△CEB中,AC=BC,∠ACD=∠BCE,CD=CE,∴△CDA≌△CEB,∴∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°-60°=60°;(2)∵△CDA≌△CEB,∴AD=BE;应用:∠AEB=90°;AE=2CM+BE;理由:∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB=∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC-∠CED=135°-45°=90°.在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE.考点:等边三角形的性质;等腰直角三角形的性质;全等三角形的判定和性质.21、(1)4a1-1a;(1)-3(x-y)1【分析】(1)根据多项式除单项式先用多项式的每一项除以单项式,再把所得的商相加,计算即可;(1)先提取公因式-3x,再对余下的多项式利用完全平方公式继续分解.【详解】解:(1)原式=4a1﹣1a+1﹣1=4a1﹣1a;(1)原式=﹣3x(x1﹣1xy+y1)=﹣3(x﹣y)1.22、(1)见解析;(2)∠ADC=105°【分析】(1)根据等边三角形的性质可得AB=AC,∠BAE=∠C=60°,再根据SAS即可证得结论;(2)根据全等三角形的性质可得∠ABE=∠CAD,然后根据三角形的外角性质和角的和差即可求出∠BOD的度数,再根据三角形的外角性质即可求出答案.【详解】(1)证明:∵△ABC为等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE与△CAD中,∵AB=AC,∠BAE=∠C,AE=CD,∴△ABE≌△CAD(SAS);(2)解:∵△ABE≌△CAD,∴∠ABE=∠CAD,∴∠BOD=∠ABO+∠BAO=∠CAD+∠BAO=∠BAC=60°,∴∠ADC=∠OBD+∠BOD=45°+60°=105°.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质以及三角形的外角性质等知识,属于常考题目,熟练掌握上述知识是解答的关键.23、(1),15;(2),.【分析】(1)原式利用平方差公式计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值;

(2)原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.【详解】(1)原式.当,时,原式.(2)原式.当时,原式.【点睛】本题考查分式的化简求值,以及整式的混合运算-化简求值,熟练掌握运算法则是解题的关键.24、(1),;(2);(3)点的坐标或或或【分析】(1)根据点A坐标,可以求出正比例函数解析式,再求出点B坐标即可求出一次函数解析式.(2)如图1中,过A作AD⊥y轴于D,求出AD后再求的面积即可.(3)分三种情形:①OA=OP,②AO=AP,③PA=PO讨论即可得出点的坐标;【详解】(1)∵正比例函数的图象经过点,∴,∴,∴正比例函数解析式为.如图1中,过作轴于,在中,,,∴,∴,∴,解得,∴一次函数的解析式为.(2)如图1中,过作轴于,∵,∴,∴,(3)当时,,,当时,,当时,线段的垂直平分线为,∴,满足条件的点的坐标或或或.【点睛】本题是一次函数综合题,掌握用待定系数法求解析式,勾股定理是解题的关键.25、(1)∠ACB的大小不会发生变化,∠ACB=45°;(2)30,60;(3)60°或72°.【分析】(1)①由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到结论;②图2中,由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,根据三角形的内角和即可得到结论;图3中,根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(2)由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的倍分情况进行分类讨论即可解答.【详解】(1)①∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论