




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数的虚部为()A.—1 B.—3 C.1 D.22.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为()A. B. C. D.3.已知为等差数列,若,,则()A.1 B.2 C.3 D.64.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:①曲线有四条对称轴;②曲线上的点到原点的最大距离为;③曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;④四叶草面积小于.其中,所有正确结论的序号是()A.①② B.①③ C.①③④ D.①②④5.已知函数,给出下列四个结论:①函数的值域是;②函数为奇函数;③函数在区间单调递减;④若对任意,都有成立,则的最小值为;其中正确结论的个数是()A. B. C. D.6.设函数的定义域为,命题:,的否定是()A., B.,C., D.,7.金庸先生的武侠小说《射雕英雄传》第12回中有这样一段情节,“……洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为()A.20 B.24 C.25 D.268.已知函数,将的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图象向上平移个单位长度,得到函数的图象,若,则的值可能为()A. B. C. D.9.若,,,则下列结论正确的是()A. B. C. D.10.已知定义在上的函数,,,,则,,的大小关系为()A. B. C. D.11.已知角的终边经过点P(),则sin()=A. B. C. D.12.已知,满足,且的最大值是最小值的4倍,则的值是()A.4 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若的展开式中各项系数之和为32,则展开式中x的系数为_____14.小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道作答,小李会其中的三道题,则抽到的2道题小李都会的概率为_____.15.如图所示,点,B均在抛物线上,等腰直角的斜边为BC,点C在x轴的正半轴上,则点B的坐标是________.16.如图,某地一天从时的温度变化曲线近似满足函数,则这段曲线的函数解析式为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求不等式的解集;(2)若对任意恒成立,求的取值范围.18.(12分)在直角坐标系xOy中,直线的参数方程为(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)设直线l与圆C交于A,B两点,,求的值.19.(12分)已知数列满足且(1)求数列的通项公式;(2)求数列的前项和.20.(12分)已知函数存在一个极大值点和一个极小值点.(1)求实数a的取值范围;(2)若函数的极大值点和极小值点分别为和,且,求实数a的取值范围.(e是自然对数的底数)21.(12分)已知函数(其中是自然对数的底数)(1)若在R上单调递增,求正数a的取值范围;(2)若f(x)在处导数相等,证明:;(3)当时,证明:对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧).22.(10分)已知,,设函数,.(1)若,求不等式的解集;(2)若函数的最小值为1,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
对复数进行化简计算,得到答案.【详解】所以的虚部为故选B项.【点睛】本题考查复数的计算,虚部的概念,属于简单题.2、A【解析】
每个县区至少派一位专家,基本事件总数,甲,乙两位专家派遣至同一县区包含的基本事件个数,由此能求出甲,乙两位专家派遣至同一县区的概率.【详解】派四位专家对三个县区进行调研,每个县区至少派一位专家基本事件总数:甲,乙两位专家派遣至同一县区包含的基本事件个数:甲,乙两位专家派遣至同一县区的概率为:本题正确选项:【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.3、B【解析】
利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出.【详解】∵{an}为等差数列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故选:B.【点睛】本题考查等差数列通项公式求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.4、C【解析】
①利用之间的代换判断出对称轴的条数;②利用基本不等式求解出到原点的距离最大值;③将面积转化为的关系式,然后根据基本不等式求解出最大值;④根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于.【详解】①:当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;综上可知:有四条对称轴,故正确;②:因为,所以,所以,所以,取等号时,所以最大距离为,故错误;③:设任意一点,所以围成的矩形面积为,因为,所以,所以,取等号时,所以围成矩形面积的最大值为,故正确;④:由②可知,所以四叶草包含在圆的内部,因为圆的面积为:,所以四叶草的面积小于,故正确.故选:C.【点睛】本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明.5、C【解析】
化的解析式为可判断①,求出的解析式可判断②,由得,结合正弦函数得图象即可判断③,由得可判断④.【详解】由题意,,所以,故①正确;为偶函数,故②错误;当时,,单调递减,故③正确;若对任意,都有成立,则为最小值点,为最大值点,则的最小值为,故④正确.故选:C.【点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.6、D【解析】
根据命题的否定的定义,全称命题的否定是特称命题求解.【详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.7、D【解析】
利用组合的意义可得混合后所有不同的滋味种数为,再利用组合数的计算公式可得所求的种数.【详解】混合后可以组成的所有不同的滋味种数为(种),故选:D.【点睛】本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题.8、C【解析】
利用二倍角公式与辅助角公式将函数的解析式化简,然后利用图象变换规律得出函数的解析式为,可得函数的值域为,结合条件,可得出、均为函数的最大值,于是得出为函数最小正周期的整数倍,由此可得出正确选项.【详解】函数,将函数的图象上的所有点的横坐标缩短到原来的倍,得的图象;再把所得图象向上平移个单位,得函数的图象,易知函数的值域为.若,则且,均为函数的最大值,由,解得;其中、是三角函数最高点的横坐标,的值为函数的最小正周期的整数倍,且.故选C.【点睛】本题考查三角函数图象变换,同时也考查了正弦型函数与周期相关的问题,解题的关键在于确定、均为函数的最大值,考查分析问题和解决问题的能力,属于中等题.9、D【解析】
根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性质,可得,即,又由,所以.故选:D.【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.10、D【解析】
先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.【详解】当时,,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.【点睛】本题考查了利用函数的单调性判断函数值大小问题,判断出函数的奇偶性、单调性是解题的关键.11、A【解析】
由题意可得三角函数的定义可知:,,则:本题选择A选项.12、D【解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.二、填空题:本题共4小题,每小题5分,共20分。13、2025【解析】
利用赋值法,结合展开式中各项系数之和列方程,由此求得的值.再利用二项式展开式的通项公式,求得展开式中的系数.【详解】依题意,令,解得,所以,则二项式的展开式的通项为:令,得,所以的系数为.故答案为:2025【点睛】本小题主要考查二项式展开式各项系数之和,考查二项式展开式指定项系数的求法,属于基础题.14、【解析】
从四道题中随机抽取两道共6种情况,抽到的两道全都会的情况有3种,即可得到概率.【详解】由题:从从4道题中随机抽取2道作答,共有种,小李会其中的三道题,则抽到的2道题小李都会的情况共有种,所以其概率为.故答案为:【点睛】此题考查根据古典概型求概率,关键在于根据题意准确求出基本事件的总数和某一事件包含的基本事件个数.15、【解析】
设出两点的坐标,结合抛物线方程、两条直线垂直的条件以及两点间的距离公式列方程,解方程求得的坐标.【详解】设,由于在抛物线上,所以.由于三角形是等腰直角三角形,,所以.由得,化为,可得,所以,解得,则.所以.故答案为:【点睛】本题考查抛物线的方程和运用,考查方程思想和运算能力,属于中档题.16、,【解析】
根据图象得出该函数的最大值和最小值,可得,,结合图象求得该函数的最小正周期,可得出,再将点代入函数解析式,求出的值,即可求得该函数的解析式.【详解】由图象可知,,,,,从题图中可以看出,从时是函数的半个周期,则,.又,,得,取,所以,.故答案为:,.【点睛】本题考查由图象求函数解析式,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)通过讨论的范围,分为,,三种情形,分别求出不等式的解集即可;(2)通过分离参数思想问题转化为,根据绝对值不等式的性质求出最值即可得到的范围.【详解】(1)当时,原不等式等价于,解得,所以,当时,原不等式等价于,解得,所以此时不等式无解,当时,原不等式等价于,解得,所以综上所述,不等式解集为.(2)由,得,当时,恒成立,所以;当时,.因为当且仅当即或时,等号成立,所以;综上的取值范围是.【点睛】本题考查了解绝对值不等式问题,考查绝对值不等式的性质以及分类讨论思想,转化思想,属于中档题.18、(1);(2)20【解析】
(1)利用即可得到答案;(2)利用直线参数方程的几何意义,.【详解】解:(1)由,得圆C的直角坐标方程为,即.(2)将直线l的参数方程代入圆C的直角坐标方程,得,即,设两交点A,B所对应的参数分别为,,从而,则.【点睛】本题考查了极坐标方程与普通方程的互化、直线参数方程的几何意义等知识,考查学生的计算能力,是一道容易题.19、(1);(2)【解析】
(1)根据已知可得数列为等比数列,即可求解;(2)由(1)可得为等比数列,根据等比数列和等差数列的前项和公式,即可求解.【详解】(1)因为,所以,又所以数列为等比数列,且首项为,公比为.故(2)由(1)知,所以所以【点睛】本题考查等比数列的定义及通项公式、等差数列和等比数列的前项和,属于基础题.20、(1);(2).【解析】
(1)首先对函数求导,根据函数存在一个极大值点和一个极小值点求出a的取值范围;(2)首先求出的值,再根据求出实数a的取值范围.【详解】(1)函数的定义域为是,,若有两个极值点,则方程一定有两个不等的正根,设为和,且,所以解得,此时,当时,,当时,,当时,,故是极大值点,是极小值点,故实数a的取值范围是;(2)由(1)知,,,则,,,由,得,即,令,考虑到,所以可化为,而,所以在上为增函数,由,得,故实数a的取值范围是.【点睛】本题主要考查了利用导数研究函数的极值点和单调性,利用函数单调性证明不等式,属于难题.21、(1);(2)见解析;(3)见解析【解析】
(1)需满足恒成立,只需即可;(2)根据的单调性,构造新函数,并令,根据的单调性即可得证;(3)将问题转化为证明有唯一实数解,对求导,判断其单调性,结合题目条件与不等式的放缩,即可得证.【详解】;令,则恒成立;,;的取值范围是;(2)证明:由(1)知,在上单调递减,在上单调递增;;令,;则;令,则;;;(3)证明:,,要证明有唯一实数解;当时,;当时,;即对于任意实数,一定有解;;当时,有两个极值点;函数在,,上单调递增,在上单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024河南省周口市卫生职业中等专业学校工作人员招聘考试及答案
- 2024海口经济学院附属艺术学校工作人员招聘考试及答案
- 美术教师劳动合同
- 租赁设备还款合同范本
- 家居装修合同注意事项
- 电子商品购销合同范本
- 重点工程项目施工合同协议书
- 电路理论试题库与答案
- 植物模拟练习题及答案
- 小学二年级数学口算速算试题
- 骨转移瘤课件
- 护士注册健康体检表下载【可直接打印版本】
- 核心素养视角下教师专业发展课件
- 污水处理培训课件
- 初中语文八年级下册第三单元综合性学习古诗苑漫步-综合性学习《古诗苑漫步》教案
- 中国十大阶层的划分课件
- 高中英语各种教材词组汇总大全(超级实用)
- 内燃机机油泵转子系列参数
- 远程视频会议系统建设方案课件
- 四十二手眼图(经典珍藏版)
- 通用横版企业报价单模板
评论
0/150
提交评论