2022年四川省什邡市城南学校数学八上期末质量检测试题含解析_第1页
2022年四川省什邡市城南学校数学八上期末质量检测试题含解析_第2页
2022年四川省什邡市城南学校数学八上期末质量检测试题含解析_第3页
2022年四川省什邡市城南学校数学八上期末质量检测试题含解析_第4页
2022年四川省什邡市城南学校数学八上期末质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若代数式在实数范围内有意义,则实数的取值范围为()A. B. C. D.2.下面计算正确的是()A. B. C. D.3.下列计算正确的是()A.a3+a2=a5 B.a6÷(﹣a3)=﹣a3C.(﹣a2)3=a6 D.4.当时,代数式的值为().A.7 B. C. D.15.学校准备从甲、乙、丙、丁四个科技创新小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差如表所示:甲乙丙丁788711.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲 B.乙 C.丙 D.丁6.如图,图中直角三角形共有A.1个 B.2个 C.3个 D.4个7.已知关于的分式方程的解是非负数,则的取值范圈是()A. B. C.且 D.或8.在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+2S2+2S3+S4=(

)A.5 B.4 C.6 D.109.使(x2+px+8)(x2﹣3x+q)乘积中不含x2和x3项的p,q的值分别是()A.p=3,q=1 B.p=﹣3,q=﹣9 C.p=0,q=0 D.p=﹣3,q=110.如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠AOB等于()A.120° B.125° C.130° D.135°二、填空题(每小题3分,共24分)11.若关于x,y的二元一次方程组的解也是二元一次方程的解,则k的值为_______________.12.如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,−3),B(4,−1).(1)若P(p,0)是x轴上的一个动点,则△PAB的最小周长为___________(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=___________时,四边形ABDC的周长最短;13.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=____.14.已知一次函数,若y随x的增大而减小,则的取值范围是___.15.当x________时,分式有意义.16.如图,已知,添加下列条件中的一个:①,②,③,其中不能确定≌△的是_____(只填序号).17.如图,已知一次函数和的图象相交于点,则根据图象可得二元一次方程组的解是________.18.若,,且,则__________.三、解答题(共66分)19.(10分)在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF①求证:△AED≌△AFD;②当BE=3,CE=7时,求DE的长;(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.20.(6分)已知方程组的解是,则方程组的解是_________.21.(6分)如图所示,在平面直角坐标系xOy中,已知点(1)在图作出关于y轴的称图形(2)若将向右移2个单位得到,则点A的对应点的坐标是

.22.(8分)如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.23.(8分)如图,四边形ABCD中,AC=5,AB=4,CD=12,AD=13,∠B=90°.(1)求BC边的长;(2)求四边形ABCD的面积.24.(8分)(尺规作图,保留作图痕迹,不写作法)如图,在△ABC中,作∠ABC的平分线BD,交AC于D,作线段BD的垂直平分线EF,分别交AB于E,BC于F,垂足为O,连结DF.在所作图中,寻找一对全等三角形,并加以证明.25.(10分)若一个三角形的三边长、、满足,你能根据已知条件判断这个三角形的形状吗?26.(10分)已知点A(a+2b,1),B(7,a﹣2b).(1)如果点A、B关于x轴对称,求a、b的值;(2)如果点A、B关于y轴对称,求a、b的值.

参考答案一、选择题(每小题3分,共30分)1、D【分析】直接利用分式有意义的条件得出答案.【详解】解:∵代数式在实数范围内有意义,∴实数a的取值范围为:a-1≠0,解得:a≠1.故选:D.【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.2、B【分析】根据二次根式的混合运算方法,分别进行运算即可.【详解】解:A.3+不是同类项无法进行运算,故A选项错误;B.=3,故B选项正确;C.,故C选项错误;D.,故D选项错误;故选B.【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.3、B【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则、分式的加减运算法则化简得出答案.【详解】解:A、,无法合并;B、,正确;C、,故此选项错误;D、,故此选项错误;故选:B.【点睛】此题主要考查了分式的加减运算、同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.4、B【分析】把代入即可求解.【详解】把代入得3-4=-1故选B.【点睛】此题主要考查代数式求值,解题的关键把x的值代入.5、C【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【详解】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选:C.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.6、C【分析】有一个角是直角的三角形是直角三角形.【详解】解:如图,直角三角形有:△ABC、△ABD、△ACD.故选C.【点睛】本题考查直角三角形的定义.掌握直角三角形的定义是关键,要做到不重不漏.7、C【分析】先解分式方程,再根据解是非负数可得不等式,再解不等式可得.【详解】方程两边乘以(x-1)得所以因为方程的解是非负数所以,且所以且故选:C【点睛】考核知识点:解分式方程.去分母,解分式方程,根据方程的解的情况列出不等式是关键.8、C【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【详解】观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S2+S1=2,S1+S4=1.则S1+2S2+2S1+S4=1+2+1=6,故选C.【点睛】本题考查了勾股定理、全等三角形的判定与性质,发现正放置的两个小正方形的面积和正好是它们之间斜放置的正方形的面积是解题的关键.9、A【分析】先根据多项式乘以多项式把展开,再合并同类项,让和项的系数为0即可.【详解】原式=x4+(﹣3+p)x3+(q﹣3p+8)x2+(pq﹣24)x+8q,∵(x2+px+8)(x2﹣3x+q)乘积中不含x2和x3项,∴﹣3+p=0,q﹣3p+8=0,∴p=3,q=1,故选A.【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解题的关键.10、B【解析】在△AOC和△BOD中,∴△AOC≌△BOD(SSS),∴∠C=∠D,又∵∠D=30°,∴∠C=30°,又∵在△AOC中,∠A=95°,∴∠AOC=(180-95-30)°=55°,又∵∠AOC+∠AOB=180°(邻补角互补),∴∠AOB=(180-55)°=125°.故选B.二、填空题(每小题3分,共24分)11、【分析】将k看做已知数求出x与y,代入2x十3y=

6中计算即可得到k的値.【详解】解:

①十②得:

2x=14k,即x=7k,

将x=

7k代入①得:7k十y=5k,即y=

-2k,

將x=7k,

y=

-2k代入2x十3y=6得:

14k-6k=6,

解得:

k=

故答案为:

【点睛】此题考查了二元一次方程组的解以及二元一-次方程的解,方程的解即为能使方程左右两边成立的未知数的值.12、【分析】(1)根据题意,设出并找到B(4,-1)关于x轴的对称点是B',其坐标为(4,1),算出AB′+AB进而可得答案;

(2)过A点作AE⊥x轴于点E,且延长AE,取A'E=AE.做点F(1,-1),连接A'F.利用两点间的线段最短,可知四边形ABDC的周长最短等于A'F+CD+AB,从而确定C点的坐标值.【详解】解:(1)设点B(4,-1)关于x轴的对称点是B',可得坐标为(4,1),连接AB′,则此时△PAB的周长最小,∵AB′=,AB=,∴△PAB的周长为,故答案为:;(2)过A点作AE⊥x轴于点E,且延长AE,取A'E=AE.作点F(1,-1),连接A'F.那么A'(2,3).

设直线A'F的解析式为y=kx+b,则,解得:,∴直线A'F的解析式为y=4x-5,

∵C点的坐标为(a,0),且在直线A'F上,∴a=,故答案为:.【点睛】本题考查最短路径问题,同时考查了根据两点坐标求直线解析式,运用解析式求直线与坐标轴的交点等知识.13、67°【解析】根据全等三角形的性质,两三角形全等,对应角相等,因为角与67°的角是对应角,因此,故答案为67°.14、k<1.【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,

∴k-1<0,

解得k<1,

故答案是:k<1.【点睛】本题主要考查了一次函数的增减性.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.15、≠2【解析】x,所以x≠2.点睛:分式有意义:,分式无意义:,分式值为0:,是分式部分易混的3类题型.16、②.【分析】一般三角形全等的判定方法有SSS,SAS,AAS,ASA,据此可逐个对比求解.【详解】∵已知,且∴若添加①,则可由判定≌;若添加②,则属于边边角的顺序,不能判定≌;若添加③,则属于边角边的顺序,可以判定≌.故答案为②.【点睛】本题考查全等三角形的几种基本判定方法,只要判定方法掌握得牢固,此题不难判断.17、【分析】直接利用已知图像结合一次函数与二元一次方程组的关系得出答案.【详解】解:如图所示:根据图中信息可得二元一次方程组的解是:.故答案为:.【点睛】此题主要考查了一次函数与二元一次方程组的关系,正确利用图形获取正确信息是解题关键.18、1【分析】根据=3m+9n求出m-n=3,再根据完全平方公式即可求解.【详解】∵=3m+9n=3(m+3n)又∴m-n=3∴(m-n)2+2mn=9+10=1故答案为:1.【点睛】此题主要考查因式分解的应用,解题的关键是因式分解的方法及完全平方公式的应用.三、解答题(共66分)19、(1)①见解析;②DE=;(2)DE的值为3或3【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=1.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中,DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=,∴DE=;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=3;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=1,∴DE=3,综上所述,DE的值为3或3.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.20、【解析】试题分析:根据题意,把方程组的解代入,可得,把①和②分别乘以5可得,和所求方程组比较,可知,因此方程组的解为.21、(1)作图见解析;(2)(1,2)【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C向右平移2个单位的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出点A′的坐标.【详解】(1)△A1B1C1如图所示;(2)△A′B′C′如图所示,A′(1,2);【点睛】本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、(1)见解析;(2)∠BAC=67.5°.【分析】(1)证出△ADC是等腰直角三角形,得出AD=CD,∠CAD=∠ACD=45°,由SAS证明△ABD≌△CED即可;(2)由角平分线定义得出∠ECD=∠ACD=22.5°,由全等三角形的性质得出∠BAD=∠ECD=22.5°,即可得出答案.【详解】解:(1)证明:∵AD⊥BC,∠ACB=45°,∴∠ADB=∠CDE=90°,△ADC是等腰直角三角形,∴AD=CD,∠CAD=∠ACD=45°,在△ABD与△CED中,,∴△ABD≌△CED(SAS);(2)解:∵CE为∠ACD的角平分线,∴∠ECD=∠ACD=22.5°,由(1)得:△ABD≌△CED,∴∠BAD=∠ECD=22.5°,∴∠BAC=∠BAD+∠CAD=22.5°+45°=67.5°.【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定和性质以及角平分线定义,熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.23、(1)3;(2)1.【分析】(1)先根据勾股定理求出BC的长度;

(2)根据勾股定理的逆定理判断出△ACD是直角三角形,四边形ABCD的面积等于△ABC和△ACD的面积和,再利用三角形的面积公式求解即可.【详解】解:(1)∵∠ABC=90°,AC=5,AB=4

∴BC=,(2)在△ACD中,AC2+CD2=52+122=16

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论