人教版高中数学全册教案-09-直线、平面、简单几何体_第1页
人教版高中数学全册教案-09-直线、平面、简单几何体_第2页
人教版高中数学全册教案-09-直线、平面、简单几何体_第3页
人教版高中数学全册教案-09-直线、平面、简单几何体_第4页
人教版高中数学全册教案-09-直线、平面、简单几何体_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

两个平面垂直的判定和性质(二)

一、素质教育目标

(一)知识教学点

1.两个平面垂直的性质定理.

2.异面直线上两点间的距离公式.

(二)能力训练点

1.弄清反证法与同一法之间的关系,并会应用同一法证题,进一步培养学

生的逻辑思维能力.

2.掌握两个平面垂直的性质定理,理解面面垂直问题可能化为线面垂直的

问题.

3.异面直线上任意两点间的距离公式不仅可用于求其值,还可以证明两条

异面直线的距离是异面直线上两点的距离中最小的.另外,还可解决分别在二面

角的面内两点的距离问题.

二、教学重点、难点、疑点及解决方法

1.教学重点:掌握两个平面垂直的性质;会运用异面直线上两点间的距离

公式.

2.教学难点:异面直线上两点间距离公式的应用.

3.教学疑点:

⑴弄清反证法与同一法的联系与区别.

⑵正确理解、应用异面直线上两点间的距离公式:EF=

+/±2|>!0886中的点式或可点心或4')的同,异问题.

三、课时安排

本课题安排2课时.本节课为第二课时,主要讲解两个平面垂直的性质及异

面直线上两点间的距离公式.

四、教与学的过程设计

(一)复习两个平面垂直的定义,判定

师:什么是两个平面互相垂直?

生:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.

师:如何判定两个平面互相垂直?

生:第一种方法根据定义,判定两个平面所成的二面角是直二面角;第二种方法是根

据判定定理,判定其中•个平面内有一条直线垂直于另一个平面.

(二)两个平面垂直的性质

师:今天我们接着研究两个平面垂直的性质.

两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的

直线垂直于另一个平面.

已知:平面a±p,anp=CD,ABUa且AB±CD于B.

求证:AB±P.

图1-134

证明:在平面B内引直线BEJ_CD,则NABE是二面角a-CD-B的平面角.

ValP,AAB1BE.

XVAB±CD,/.AB±3.

师:从性质定理可以得出,把面面垂直的问题转化为线面垂直的问题.

例1如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二

个平面的直线,在第一个平面内.

图1-135

已知:a_L6,pea,PGa,alB.

求证:aUa.

师提示:要证明aUa,-一般用反证法,即否定结论■*推出矛盾f肯定结论.下

面请同学们写出它的证明过程.

证明(反证法),假设aea,网在平面(I内,过点琲直线blc,

其中C为a与B的交线.

•/a±0,/.b±P.

又"6a,PWa,alB,

这与“过一点P有且只有一条直线与已知平面垂直”矛盾.

.'.aUa.

师:现在我们来看课本P.44的证明,这种方法叫同-法.什么是同一法呢?

(幻灯显示)

一个命题,如果它的题设和结论所指的事物都是唯•的,那么原命题和它的逆命题中,

只要有一个成立,另一个就一定成立,这个道理叫做同一法则.在符合同一法则的前提下,

代替证明原命题而证明它的逆命题成立的一种方法叫做同一法.

同一法的一般步骤是什么?(幻灯显示)

1.不从已知条件入手,而另作图形使它具有求证的结论中所提的特性;

2.证明所作的图形的特性,与已知条件符合;

3.因为已知条件和求证的结论所指的事物都是唯一的,从而推出所作的图

形与已知条件要求的是一个东西,由此断定原命题成立.

证明(同一法):设aAB=c,过点P在平面a内作直线b_Lc,根据上面的

定理有b_LB.

因为经过一点只能有一条直线与平面B垂直,所以直线a应与直线b重合.

即aUa.

师:比较反证法与同一法,我们可以知道:凡可用同一法证明的命题也可用反证法来

证;反证法可适用于各种命题,同一法只适用于符合同一法则的命题.

另外,例1的结论也可作为两个平面垂直的另一个性质,可直接应用.

下面请同学们一齐完成例2.

(三)异而直线上两点间的距离

例2已知两条异面直线a、b所成的角为0,它们的公垂线段AA'的长度

为d.在直线a、b上分别取点E、F,设,A'E=m,AF=n,求EF.

图1-136

解:设经过b与a平行的平面为a,经过a和AA'的平面为B,aCB=c,

则©〃2,因而b、c所成的角等于。,且AA'LC.

又•.•AA'1b,

:.AN±a.

根据两个平面垂直的判定定理,B_La,在平面B内作EGLC,则EG=AA'.并且

根据两个平面垂直的性质定理,EG1a.连结FG,则EGJ_FG.在Rt^FEG中.

EF2=EG2+FG2

VAG=m,

.•.在aAFG中.

FG2=m2+n2-2mncos0.

又;EG2=d2

EF2=dw+m2+n2-2mncos0.

如果点F(或E)在点A(或A')的另一侧,则EF2=d2+m2+n2+2mncos。.

因此.EF=Jd"+m'+n'±2mncosq.

师:例2不仅求出两条异面直线上任意两点间的距离公式,还解决了下面的

三个问题:

⑴证明了两条异面直线公垂线的存在性.

⑵证明两条异面直线的距离是异面直线上两点的距离最小的.

VAA'=EG,且AA',EG是平面a的垂线,而EF是斜线,

.•.AA'<EF.

如在实际中,两条交叉的高压电线如果放电时,火花正是通过它们的最短距离.

(3)也可以解决分别在二面角的面内两点的距离问题,请看下面练习.

(四)练习

在60°二面角的枝上,有两个点A、B,AC、BD分别是在这个二面角的两个

面内垂直于AB的线段.已知:AB=4cm,AC=6cm,BD=8cm,利用异面直线上两

点距离公式求CD.(P.45中练习3)

KiA£P,BDCP,AOBD,

...AC与BD是异面直线.

:AB_LAC交于点A,ABJ_BD交于点B,

.•.AB是AC、BD的公垂线,AC、BC所成角是60°.

已知AB=4cm,AC=6cm,BD=8cm.

CD=VACa*ABa-ZAC•BDOMOT

*8a-2*6*8*1

・病・2师cm)

a

B

图1-137

师点评:根据二面角的平面角来求异面直线上两点间的距离时;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论