




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如果等腰三角形两边长是5cm和2cm,那么它的周长是()A.7cm B.9cm C.9cm或12cm D.12cm2.若(x-3)(x+5)是x2+px+q的因式,则q为()A.-15 B.-2 C.8 D.23.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D,E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线.你认为工人师傅在此过程中用到的三角形全等的判定方法是这种作法的道理是(
)A.SAS B.ASA C.AAS D.SSS4.下列运算正确的是()A.(3a2)3=27a6 B.(a3)2=a5C.a3•a4=a12 D.a6÷a3=a25.下列手机软件图标中,是轴对称图形的是()A. B. C. D.6.将34.945取近似数精确到十分位,正确的是()A.34.9 B.35.0 C.35 D.35.057.用图象法解方程组时,下图中正确的是()A. B.C. D.8.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC④BA+BC=2BF其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④9.在平面直角坐标系中,点关于轴对称的点的坐标为A. B. C. D.10.如图,牧童在A处放牛,其家在B处,A,B到海岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A.750 米 B.1500米 C.500 米 D.1000米11.在一条笔直的公路上有两地,甲,乙两辆货车都要从地送货到地,甲车先从地出发匀速行驶,3小时后乙车从地出发,并沿同一路线匀速行驶,当乙车到达地后立刻按原速返回,在返回途中第二次与甲车相遇,甲车出发的时间记为(小时),两车之间的距离记为(千米),与的函数关系如图所示,则乙车第二次与甲车相遇是甲车距离地()千米.A.495 B.505 C.515 D.52512.由四舍五入得到的近似数,精确到()A.万位 B.百位 C.百分位 D.个位二、填空题(每题4分,共24分)13.一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为___.14.如图,是的高,是的平分线,,则的度数是_________.15.如图,,,,,则点的坐标为____.16.有一个长方体,长为4cm,宽2cm,高2cm,试求蚂蚁从A点到G的最短路程________17.整体思想就是通过研究问题的整体形式从面对问题进行整体处理的解题方法.如,此题设“,”,得方程,解得,.利用整体思想解决问题:采采家准备装修-厨房,若甲,乙两个装修公司,合做需周完成,甲公司单独做4周后,剩下的由乙公司来做,还需周才能完成,设甲公司单独完成需周,乙公司单独完成需周,则得到方程_______.利用整体思想,解得__________.18.如图,中,DE垂直平分BC交BC于点D,交AB于点E,,,则______.三、解答题(共78分)19.(8分)阅读材料:若m2﹣2mn+2n2﹣11n+22=1,求m,n的值.解:∵m2﹣2mn+2n2﹣11n+22=1,∴(m2﹣2mn+n2)+(n2﹣11n+22)=1.∴(m﹣n)2+(n﹣2)2=1,∴m﹣n=1,n﹣2=1.∴n=2,m=2.根据你的观察,探究下面的问题:(1)已知:x2+2xy+2y2+4y+4=1,求xy的值;(2)已知:△ABC的三边长a,b,c都是正整数,且满足:a2+b2﹣16a﹣12b+111=1,求△ABC的周长的最大值;(3)已知:△ABC的三边长是a,b,c,且满足:a2+2b2+c2﹣2b(a+c)=1,试判断△ABC是什么形状的三角形并说明理由.20.(8分)已知.(1)化简;(2)当时,求的值;(3)若,的值是否存在,若存在,求出的值,若不存在,说明理由.21.(8分)先化简,再求值.,其中x满足.22.(10分)如图,在中,,的垂直平分线交于点,交于点.(1)若,求的长;(2)若,求证:是等腰三角形.23.(10分)计算:(﹣)﹣2+4×(﹣1)2019﹣|﹣23|+(π﹣5)024.(10分)先化简,再求值:[(x﹣2y)2﹣(x+y)(x﹣y)+5xy]÷y,其中x=﹣2,y=1.25.(12分)探究应用:(1)计算:___________;______________.(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含字母的等式表示该公式为:_______________.(3)下列各式能用第(2)题的公式计算的是()A.B.C.D.26.如图,在中,,,平分,延长至,使.(1)求证:;(2)连接,试判断的形状,并说明理由.
参考答案一、选择题(每题4分,共48分)1、D【解析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论.【详解】解:当三边是2cm,2cm,5cm时,不符合三角形的三边关系;当三角形的三边是5cm,5cm,2cm时,符合三角形的三边关系,此时周长是5+5+2=12cm.故选:D.【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.2、A【分析】直接利用多项式乘法或十字相乘法得出q的值.【详解】解:∵(x−3)(x+5)是x2+px+q的因式,∴q=−3×5=−1.故选A.【点睛】此题主要考查了十字相乘法分解因式,正确得出q与因式之间关系是解题关键.3、D【分析】由三边对应相等得△DOF≌△EOF,即由SSS判定两个三角形全等.做题时要根据已知条件结合判定方法逐个验证.【详解】依题意知,在△DOF与△EOF中,,∴△DOF≌△EOF(SSS),∴∠AOF=∠BOF,即OF即是∠AOB的平分线.故选D.【点睛】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.4、A【分析】根据同底数幂的除法的运算方法,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判断即可.【详解】解:∵(3a2)3=27a6,∴选项A符合题意;∵(a3)2=a6,∴选项B不符合题意;∵a3•a4=a7,∴选项C不符合题意;∵a6÷a3=a3,∴选项D不符合题意.故选:A.【点睛】本题考查的知识点是同底数幂的乘除法的运算法则以及幂的乘方,积的乘方的运算法则,熟练掌握以上知识点的运算法则是解此题的关键.5、B【分析】根据轴对称图形的概念求解.【详解】解:A、不是轴对称图形,故错误;
B、是轴对称图形,故正确;
C、不是轴对称图形,故错误;
D、不是轴对称图形,故错误.故选B.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6、A【分析】把百分位上的数字4进行四舍五入即可得出答案.【详解】34.945取近似数精确到十分位是34.9;故选:A.【点睛】此题考查近似数,根据要求精确的数位,看它的后一位数字,根据“四舍五入”的原则精确即可.7、C【解析】将方程组的两个方程,化为y=kx+b的形式;然后再根据两个一次函数的解析式,判断符合条件的函数图象.【详解】解方程组的两个方程可以转化为:y=和y=,只有C符合这两个函数的图象.故选:C.【点睛】一般地,每个二元一次方程组都对应着两个一次函数,也就是两条直线.从“数”的角度看,解方程组就是求使两个函数值相等的自变量的值以及此时的函数值.从“形”的角度看,解方程组就是相当于确定两条直线的交点坐标.8、D【分析】易证,可得,AD=EC可得①②正确;再根据角平分线的性质可求得,即③正确,根据③可判断④正确;【详解】∵BD为∠ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBD中,BD=BC,∠ABD=∠CDB,BE=BA,∴△(SAS),故①正确;∵BD平分∠ABC,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE是等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,故③正确;作EG⊥BC,垂足为G,如图所示:∵E是BD上的点,∴EF=EG,在△BEG和△BEF中∴△BEG≌△BEF,∴BG=BF,在△CEG和△AFE中∴△CEG≌△AFE,∴AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,故④正确;故选:D.【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;9、D【分析】根据关于轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】点关于轴对称的点的坐标为,故选:.【点睛】此题考查直角坐标系中关于坐标轴对称的点的坐标特点,掌握对称点的特点是解题的关键.10、D【分析】根据轴对称的性质和“两点之间线段最短”,连接A′B,得到最短距离为A′B,再根据全等三角形的性质和A到河岸CD的中点的距离为500米,即可求出A'B的值.【详解】解:作出A的对称点A′,连接A′B与CD相交于M,则牧童从A处把牛牵到河边饮水再回家,最短距离是A′B的长.
由题意:AC=BD,所以A′C=BD,
所以CM=DM,M为CD的中点,
易得△A′CM≌△BDM,
∴A′M=BM
由于A到河岸CD的中点的距离为500米,
所以A′到M的距离为500米,
A′B=2A′M=1000米.
故最短距离是1000米.故选:D.【点睛】此题考查了轴对称的性质和“两点之间线段最短”,解答时要注意应用相似三角形的性质.11、A【分析】根据题意列出方程组,得出甲乙的速度,再由路程关系确定第二次相遇的时间,进而求出乙车第二次与甲车相遇是甲车距离地的距离.【详解】解:设甲的速度为,甲的速度为,由题意可知,当t=4.5时,乙车追上甲车,第一次相遇,当t=7时,乙车到达B地,故,解得:,∴总A、B之间总路程为:,当t=7时,甲离B地还有:,∴(60+180)t=300解得,即再经过小时后,甲乙第二次相遇,此时甲车距离地的距离为:(千米)故答案为:A【点睛】本题考查了函数图象与行程的问题,解题的关键是准确把握图象与实际行程的关系,确定甲乙的速度.12、B【分析】由于=80100,观察数字1所在的数位即可求得答案.【详解】解:∵=80100,数字1在百位上,∴近似数精确到百位,故选B.【点睛】此题主要考查了近似数和有效数字,熟记概念是解题的关键.二、填空题(每题4分,共24分)13、【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.0000065第一个有效数字前有6个0(含小数点前的1个0),从而.14、1【分析】根据直角三角形两锐角互余计算出∠CAD的度数,然后再根据角平分线定义可得∠1的度数.【详解】解:∵AD是△ABC的高,∠C=40°,
∴∠DAC=90°-∠C=50°,
∵AE平分∠CAD,
∴∠1=∠CAD=1°.故答案为:1.【点睛】本题考查直角三角形两锐角互余,角平分线定义,关键是掌握直角三角形两锐角互余,理清角之间的关系.15、【分析】如图,作BM⊥x轴于M,由△AOC≌△CMB,推出CM=OA,BM=OC,由此即可解决问题.【详解】如图,作BM⊥x轴于M,
∵,,∴,,
∵∠ACB=90°,
∴∠ACO+∠BCM=90°,∠OAC+∠ACO=90°,
∴∠OAC=∠BCM,
在△AOC和△CMB中,,
∴△AOC≌△CMB,
∴,,
∴,
∴点B坐标为,
故答案为:.【点睛】本题考查坐标与图形的性质、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.16、【分析】两点之间线段最短,把A,G放到同一个平面内,从A到G可以有3条路可以到达,求出3种情况比较,选择最短的.【详解】解:第一种情况:第二种情况:第三种情况:综上,最小值为【点睛】如此类求蚂蚁从一个点到另一个点的最短距离的数学问题,往往都需要比较三种路径的长短,选出最优的.17、【分析】设甲公司单独完成需x周,乙公司单独完成需y周,依题意得分式方程组,换元后得关于a和b的二元一次方程组,解得a和b,再根据倒数关系可得x和y的值,从而问题得解.【详解】设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:,设,原方程化为:,解得:,∴,故答案为:;.【点睛】本题考查了换元法解分式方程组在工程问题中的应用,要注意整体思想在该类型习题中的应用.18、【分析】利用线段垂直平分线的性质和等边对等角可得,从而可求得,再利用三角形内角和定理即可得解.【详解】解:∵DE垂直平分BC交BC于点D,,∴EC=BE,∴,∵,∴,∴.故答案为:.【点睛】本题考查垂直平分线的性质,等腰三角形的性质.理解垂直平分线的点到线段两端距离相等是解题关键.三、解答题(共78分)19、(1);(2)△ABC周长的最大值为4;(3)△ABC是等边三角形.【分析】(1)利用完全平方公式以及非负数的性质求解即可.(2)利用完全平方公式以及非负数的性质求解即可.(3)利用完全平方公式以及非负数的性质求解即可.【详解】解:(1)∵x2+2xy+2y2+4y+4=1,∴(x2+2xy+y2)+(y2+4y+4)=1∴(x+y)2+(y+2)2=1,∴x+y=1,y+2=1,∴x=2,y=﹣2,∴.(2)∵a2+b2﹣16a﹣12b+111=1∴(a2﹣16a+64)+(b2﹣12b+36)=1,∴(a﹣8)2+(b﹣6)2=1,∴a=8,b=6由三角形的三边关系可知2<c<14且c为正整数∴c的最大值是3.∴△ABC周长的最大值为4.(3)结论:△ABC是等边三角形.理由:∵a2+2b2+c2﹣2b(a+c)=1,∴(a2﹣2ab+b2)+(b2﹣2bc+c2)=1,∴(a﹣b)2+(b﹣c)2=1,∴a=b,b=c,即a=b=c,∴△ABC是等边三角形.【点睛】本题考查了完全平方公式,非负数的性质,三角形的三边关系,等边三角形的判定等知识,是三角形综合题,解题的关键是理解题意,灵活运用所学知识解决问题.20、(1);(2)A=或;(3)不存在,理由见详解.【分析】(1)先把括号里面的通分,再计算整式除法即可;
(2)利用完全平方公式,求出x-y的值,代入化简后的A中,求值即可;
(3)利用非负数的和为0,确定x、y的关系,把x、y代入A的分母,判断A的值是否存在.【详解】解:(1)===;(2)∵x2+y2=13,xy=-6
∴(x-y)2=x2-2xy+y2=13+12=25
∴x-y=±5,当x-y=5时,A=;
当x-y=-5时,A=.(3)∵,∴x-y=0,y+2=0
当x-y=0时,
A的分母为0,分式没有意义.∴当时,A的值不存在.【点睛】本题考查了分式的加减乘除运算、完全平方公式、非负数的和及分式有无意义的条件.题目综合性较强.初中阶段学过的非负数有:a的偶次幂,a(a≥0)的偶次方根,a|的绝对值.21、,-5【分析】先将分式进行化简后,将变形成,代入即可.【详解】解:原式∴原式=-5【点睛】本题考查了分式的化简求值,掌握分式化简是解题的关键.22、(1);(2)见解析.【分析】(1)根据线段垂直平分线的性质可得EA=EB,即,结合可求出,进而得到CE的长;(2)根据三角形内角和定理和等腰三角形的性质求出∠C=72°,根据线段垂直平分线的性质可得EA=EB,求出∠EBA=∠A=36°,然后利用三角形外角的性质得到∠BEC=72°即可得出结论.【详解】解:(1)∵DE是AB的垂直平分线,∴EA=EB,∴,∵,∴,∴;(2)∵,,∴∠ABC=∠C=,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=36°,∴∠BEC=∠EBA+∠A=72°,∴∠C=∠BEC,∴BC=BE,即是等腰三角形.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的判定和性质、三角形内角和定理以及三角形外角的性质等知识,灵活运用相关性质定理进行推理计算是解题关键.23、-2【分析】根据零指数幂的意义以及负整数指数幂的意义,先进行计算,再进行有理数加减的混合运算,即可得到答案.【详解】解:原式=(﹣3)2+4×(﹣1)﹣8+1=9﹣4﹣8+1=﹣2【点睛】本题考查的是实数的运算,解题的关键是熟记幂的相关知识以及实数的运算法则.24、5y+x,2.【分析】原式中括号中利用完全平方公式,平方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度个人住房按揭贷款担保协议合同版
- 2025年度公司销售业务员协议书:智能穿戴设备销售代理协议
- 2025年度就业协议违约金赔偿与就业心理调适协议
- 2025年度绿色环保材料研发股东合作协议书
- 2025年度停车场停车费电子支付服务合同
- 2025年度建设银行个人住房贷款合同电子版
- 2025年度不锈钢栏杆项目风险评估与管理合同
- 农资装卸搬运服务协议
- 2025年度农村土地经营权转让与农业扶贫项目合作合同
- 二零二五年度土地承包种植与乡村旅游结合合同
- 2024年咸阳职业技术学院单招职业适应性测试题库汇编
- 健身房带小孩入场免责协议
- 2024年安徽医学高等专科学校单招职业适应性测试题库含答案
- 2023-2024学年人教版六年级下册《负数 百分数(二)》测试卷附答案解析
- 湖北省武汉市洪山区2024年七年级下学期期末数学试题附答案
- 《研学旅行市场营销》课件-1.2.3研学旅行营销理论发展
- 居民住宅小区电力配置规范
- 部编版版语文三年级下册全册教案
- 山东省2023-2024学年高一下学期3月月考物理试题(A卷)(解析版)
- 2024-2034年中国形体矫正鞋行业市场现状分析及竞争格局与投资发展研究报告
- 项目保密工作实施方案
评论
0/150
提交评论