版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE2025年高考数学一轮复习课时作业-利用空间向量研究直线、平面的位置关系【原卷版】(时间:45分钟分值:75分)【基础落实练】1.(5分)已知平面α内有一个点A(2,-1,2),α的一个法向量为n=(3,1,2),则下列点P中,在平面α内的是()A.(1,-1,1) B.1C.1,-3,32 2.(5分)已知向量m=(2,-4x,1)是平面α的法向量,n=(6,12,-3y)是直线l的方向向量,若l⊥α,则x+y=()A.-4 B.4 C.-2 D.23.(5分)如图,在正方体ABCD-A1B1C1D1中,以D为原点建立空间直角坐标系,E为BB1的中点,F为A1D1的中点,则下列向量中,能作为平面AEF的法向量的是()A.(1,-2,4) B.(-4,1,-2)C.(2,-2,1) D.(1,2,-2)4.(5分)如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=2a3,则MN与平面BB1C1C的位置关系是(A.相交 B.平行C.垂直 D.不能确定5.(5分)如图,在正方体ABCD-A1B1C1D1中,E,F分别为AB,BC的中点,则()A.BD1⊥平面B1EF B.BD⊥平面B1EFC.A1C1∥平面B1EF D.A1D∥平面B1EF6.(5分)(多选题)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BB1的中点,F为A1D1的中点,如图所示建立空间直角坐标系,则下列说法正确的有()A.DB1=32B.向量AE与AC1C.平面AEF的一个法向量是(4,-1,2)D.A1D⊥BD1【加练备选】(多选题)以下命题正确的是()A.直线l的方向向量为a=(1,-1,2),直线m的方向向量b=(1,2,1),则l⊥mB.直线l的方向向量a=(0,1,-1),平面α的法向量n=(1,-1,-1),则l⊥αC.两个不同平面α,β的法向量分别为n1=(2,-1,0),n2=(-4,2,0),则α∥βD.平面α经过三点A(1,0,-1),B(0,1,0),C(-1,2,0),向量n=(1,u,t)是平面α的法向量,则u+t=17.(5分)已知AB=(1,5,-2),BC=(3,1,z),若AB⊥BC,BP=(x-1,y,-3),且BP⊥平面ABC,则x+y+z=________.
8.(5分)如图,在棱长为3的正方体ABCD-A1B1C1D1中,点M在棱C1C上,且CM=2MC1.以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.写出平面MD1B的一个法向量为_______.
9.(5分)在正三棱柱ABC-A1B1C1中,侧棱长为2,底面边长为1,M为BC的中点,C1N=λNC,且AB1⊥MN,则λ的值为10.(10分)如图,四棱锥P-ABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.求证:(1)PB∥平面EFH;(2)PD⊥平面AHF.【证明】(1)因为E,H分别是线段AP,AB的中点,所以PB∥EH.因为PB⊄平面EFH,且EH⊂平面EFH,所以PB∥平面EFH.(2)建立如图所示的空间直角坐标系.则A(0,0,0),D(0,2,0),P(0,0,2),F(0,1,1),H(1,0,0).PD=(0,2,-2),AH=(1,0,0),AF=(0,1,1),因为PD·AF=0×0+2×1+(-2)×1=0,PD·AH=0×1+2×0+(-2)×0=0.所以PD⊥AF,PD⊥AH,所以PD⊥AF,PD⊥AH.因为AH∩AF=A,且AH,AF⊂平面AHF,所以PD⊥平面AHF.【能力提升练】11.(5分)如图,在长方体ABCD-A1B1C1D1中,AB=3AD=3AA1=3,点P为线段A1C上的动点,则下列结论不正确的是()A.当A1C=2A1P时,B1,B.当AP⊥A1C时,APC.当A1C=3A1P时,D1PD.当A1C=5A1P时,A1C⊥12.(5分)在空间直角坐标系中,点P(x,y,z)满足:x2+y2+z2=16,平面α过点M(1,2,3),且平面α的一个法向量n=(1,1,1),则点P在平面α上所围成的封闭图形的面积等于___________.
13.(10分)(2024·常州模拟)如图,直角梯形ABCD与等腰直角三角形ABP所在的平面互相垂直,且AB∥CD,AB⊥BC,AP⊥PB,AB=2,BC=CD=1.(1)求证:AB⊥PD;(2)求直线PC与平面ABP所成角的余弦值;(3)线段PA上是否存在点E,使得PC∥平面EBD?若存在,求出AEAP的值;若不存在,请说明理由2025年高考数学一轮复习课时作业-利用空间向量研究直线、平面的位置关系【解析版】(时间:45分钟分值:75分)【基础落实练】1.(5分)已知平面α内有一个点A(2,-1,2),α的一个法向量为n=(3,1,2),则下列点P中,在平面α内的是()A.(1,-1,1) B.1C.1,-3,32 【解析】选B.由题意可知符合条件的点P应满足PA·n=0,选项A,PA=(2,-1,2)-(1,-1,1)=(1,0,1),PA·n=3×1+1×0+2×1=5≠0,故不在平面α内;同理可得:选项B,PA=(1,-4,12),PA·n=0,故在平面α选项C,PA=(1,2,12),PA·n=6≠0,故不在平面α选项D,PA=(3,-4,72),PA·n=12≠0,故不在平面α内2.(5分)已知向量m=(2,-4x,1)是平面α的法向量,n=(6,12,-3y)是直线l的方向向量,若l⊥α,则x+y=()A.-4 B.4 C.-2 D.2【解析】选C.因为n是直线l的方向向量,m是平面α的法向量,l⊥α,所以m∥n,所以26=-4x12=1-3y,解得x=-1,3.(5分)如图,在正方体ABCD-A1B1C1D1中,以D为原点建立空间直角坐标系,E为BB1的中点,F为A1D1的中点,则下列向量中,能作为平面AEF的法向量的是()A.(1,-2,4) B.(-4,1,-2)C.(2,-2,1) D.(1,2,-2)【解析】选B.设AB=2,则A(2,0,0),E(2,2,1),F(1,0,2),AE=(0,2,1),AF=(-1,0,2),设平面AEF的法向量n=(x,y,z),则n·AE=2y+z4.(5分)如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=2a3,则MN与平面BB1C1C的位置关系是(A.相交 B.平行C.垂直 D.不能确定【解析】选B.分别以C1B1,C1D1,C1C所在直线为x,y,z轴,建立空间直角坐标系.因为A1M=AN=2a3,A1B=AC=2a,所以M(a,23a,a3),N(23a,所以MN=(-a3,0,23又因为C1(0,0,0),D1(0,a,0),所以C1D1=(0,a,0),所以MN·C1D因为C1D1是平面BB1C1C的一个法向量,且MN⊄平面BB1C1C,所以MN∥平面BB15.(5分)如图,在正方体ABCD-A1B1C1D1中,E,F分别为AB,BC的中点,则()A.BD1⊥平面B1EF B.BD⊥平面B1EFC.A1C1∥平面B1EF D.A1D∥平面B1EF【解析】选C.以点D为原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,设AB=2,则B12,2,2,E2B2,2,0,A12,0D1(0,0,2).EF=-1,1,0,EB1DB=2,2,0,A1设平面B1EF的法向量为m=x,y,z,则m·因为BD1与m不平行,所以BD1与平面B1因为DB与m不平行,所以BD与平面B1EF不垂直,B错误;因为A1C1·m=0,且直线A1C1在平面B1EF外,所以A1C1∥平面B因为DA1·m=2≠0,所以A1D与平面B1EF6.(5分)(多选题)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BB1的中点,F为A1D1的中点,如图所示建立空间直角坐标系,则下列说法正确的有()A.DB1=32B.向量AE与AC1C.平面AEF的一个法向量是(4,-1,2)D.A1D⊥BD1【解析】选BCD.根据空间直角坐标系D-xyz,可知D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),A1(2,0,2),B1(2,2,2),C1(0,2,2),D1(0,0,2),由于E为BB1的中点,F为A1D1的中点,所以E(2,2,1),F(1,0,2),故DB1=|DB1|=22对于B,因为AE=(0,2,1),AC1=(-2,2,2),所以|AE|=5,|AC故cos<AE,AC1>=AE·AC对于C,设平面AEF的法向量为n=(x,y,z),因为AE=(0,2,1),AF=(-1,0,2),所以n·AE=0n·AF=0,整理得y=-对于D,由于A1D=(-2,0,-2),BD1=(-2,-2,2),故A1D·BD1=0,故【加练备选】(多选题)以下命题正确的是()A.直线l的方向向量为a=(1,-1,2),直线m的方向向量b=(1,2,1),则l⊥mB.直线l的方向向量a=(0,1,-1),平面α的法向量n=(1,-1,-1),则l⊥αC.两个不同平面α,β的法向量分别为n1=(2,-1,0),n2=(-4,2,0),则α∥βD.平面α经过三点A(1,0,-1),B(0,1,0),C(-1,2,0),向量n=(1,u,t)是平面α的法向量,则u+t=1【解析】选CD.直线l的方向向量a=(1,-1,2),直线m的方向向量b=(1,2,1),a·b=(1,-1,2)·(1,2,1)=1,则l与m不垂直,所以A不正确;直线l的方向向量a=(0,1,-1),平面α的法向量n=(1,-1,-1),a·n=(0,1,-1)·(1,-1,-1)=0,则l∥α或l⊂α,所以B不正确;两个不同平面α,β的法向量分别为n1=(2,-1,0),n2=(-4,2,0),n1=-12n2=(2,-1,0),则α∥β平面α经过三点A(1,0,-1),B(0,1,0),C(-1,2,0),向量n=(1,u,t)是平面α的法向量,可得n·AB=-1+u7.(5分)已知AB=(1,5,-2),BC=(3,1,z),若AB⊥BC,BP=(x-1,y,-3),且BP⊥平面ABC,则x+y+z=________.
【解析】因为AB⊥BC,所以AB·BC=3+5-2z=0,所以z=4,所以BC=(3,1,4),又因为BP⊥平面ABC,AB,BC⊂平面ABC,所以BP⊥AB,BP⊥BC,所以BP·解得x=407y=-157,因此答案:538.(5分)如图,在棱长为3的正方体ABCD-A1B1C1D1中,点M在棱C1C上,且CM=2MC1.以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.写出平面MD1B的一个法向量为_______.
【解析】根据题意,在坐标系中,A(3,0,0),C(0,3,0),B(3,3,0),D1(0,0,3),C1(0,3,3),由于点M在棱C1C上,且CM=2MC1,因此M(0,3,2),则D1B=(3,3,-3),设平面MD1B的一个法向量为n=(x,y,z),则有D1令y=1可得,x=2,z=3,则n=(2,1,3),故平面MD1B的一个法向量为(2,1,3).答案:(2,1,3)(答案不唯一)9.(5分)在正三棱柱ABC-A1B1C1中,侧棱长为2,底面边长为1,M为BC的中点,C1N=λNC,且AB1⊥MN,则λ的值为【解析】如图所示,取B1C1的中点P,连接MP,以MC,MA,MP的方向为x,y,z轴正方向建立空间直角坐标系,因为底面边长为1,侧棱长为2,则A0,32,0,B1-12,0,设N12,0,t,因为C1N所以AB1=-12,-又因为AB1⊥MN,所以AB1·所以-14+41+λ=0,解得答案:1510.(10分)如图,四棱锥P-ABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.求证:(1)PB∥平面EFH;(2)PD⊥平面AHF.【证明】(1)因为E,H分别是线段AP,AB的中点,所以PB∥EH.因为PB⊄平面EFH,且EH⊂平面EFH,所以PB∥平面EFH.(2)建立如图所示的空间直角坐标系.则A(0,0,0),D(0,2,0),P(0,0,2),F(0,1,1),H(1,0,0).PD=(0,2,-2),AH=(1,0,0),AF=(0,1,1),因为PD·AF=0×0+2×1+(-2)×1=0,PD·AH=0×1+2×0+(-2)×0=0.所以PD⊥AF,PD⊥AH,所以PD⊥AF,PD⊥AH.因为AH∩AF=A,且AH,AF⊂平面AHF,所以PD⊥平面AHF.【能力提升练】11.(5分)如图,在长方体ABCD-A1B1C1D1中,AB=3AD=3AA1=3,点P为线段A1C上的动点,则下列结论不正确的是()A.当A1C=2A1P时,B1,B.当AP⊥A1C时,APC.当A1C=3A1P时,D1PD.当A1C=5A1P时,A1C⊥【解析】选B.如图,建立空间直角坐标系,则A1(1,0,1),C(0,3,0),D1(0,0,1),A(1,0,0),B1(1,3,1),D(0,0,0),B(1,3,0),C1(0,3,1),当A1C=2A1P时,A1P=-12,而DB1=(1,3,1),所以DP=所以B1,P,D三点共线,A正确,不符合题意;设A1P=λA1C,则AP=AA1+A1P=AA1+λA1C=(-当AP⊥A1C时,有AP·A1所以λ=15,所以AP=(-15,35,45),D1P=D1A1所以AP·D1P=-15,所以AP与D1当A1C=3A1P时,A1P=-13,又DB=(1,3,0),DC1=(0,3,1),所以D1P=所以D1P,DB,又D1P⊄平面BDC1,所以D1P∥平面BDC1,C正确,不符合题意;当A1C=5A1P时,A1P=又AD1·A1C=(-1,0,1)·(-1,3,-1)=0,所以A1CAP·A1C=-1所以A1C⊥AP,因为AD1∩AP=A,AD1,AP⊂平面D1AP,所以A1C⊥平面D1AP,D正确,不符合题意.12.(5分)在空间直角坐标系中,点P(x,y,z)满足:x2+y2+z2=16,平面α过点M(1,2,3),且平面α的一个法向量n=(1,1,1),则点P在平面α上所围成的封闭图形的面积等于___________.
【解析】因为点P(x,y,z)满足x2+y2+z2=16,所以点P在以原点O为球心、4为半径的球面上.球与平面α相交围成的封闭图形为圆,设圆心为A,则OA⊥α.因为平面α的一个法向量n=(1,1,1),所以可设A(t,t,t),又因为点M(1,2,3),所以AM=(1-t,2-t,3-t).因为平面α过点M(1,2,3),所以n⊥AM,所以n·AM=0,所以1-t+2-t+3-t=0,解得t=2,所以|OA|=23,所以圆A的半径为42所以圆A的面积为4π.答案:4π13.(10分)(2024·常州模拟)如图,直角梯形ABCD与等腰直角三角形ABP所在的平面互相垂直,且AB∥CD,AB⊥BC,AP⊥PB,AB=2,BC=CD=1.(1)求证:AB⊥PD;(2)求直线PC与平面ABP所成角的余弦值;(3)线段PA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年二手住宅交易意向合同3篇
- 2024年临时工劳务承包标准协议下载一
- 2024儿童游乐场租赁业务协议细则版B版
- 2024年商业交易协议样本版B版
- 2024年回迁房买卖合同的税务优惠政策
- 2024专业旅行团专属包车服务合同版
- 二零二四年文化创意产业投资基金合同
- 2024中介服务居间法律协助协议样本版B版
- 2024年度网络推广合同推广方式与效果评估3篇
- 智能家居系统研发合同(2024版)2篇
- 豆制品购销合同
- 中国共产主义青年团团章
- 《TCPIP协议基础》课件
- 2024年财务部年终工作计划例文(5篇)
- 折叠椅市场发展现状调查及供需格局分析预测报告
- 变电检修工-高级工练习题含参考答案
- Unit 4 My Favourite Subject .大单元整体说课稿2024-2025学年人教版英语七年级上册
- 儿童口腔保健(妇幼保健院讲师课件)
- 2024年四川省安全员B证考试试题题库
- 2024年全新血液透析
- 2024年凉山金阳县面向全县考调工作人员24人高频难、易错点练习500题附带答案详解
评论
0/150
提交评论