




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国宋代数学家秦九韶(1202-1261)在《数书九章》(1247)一书中提出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.其实质是根据三角形的三边长,,求三角形面积,即.若的面积,,,则等于()A. B. C.或 D.或2.在边长为的菱形中,,沿对角线折成二面角为的四面体(如图),则此四面体的外接球表面积为()A. B.C. D.3.如图,棱长为的正方体中,为线段的中点,分别为线段和棱上任意一点,则的最小值为()A. B. C. D.4.已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为()A. B.C. D.5.等差数列的前项和为,若,,则数列的公差为()A.-2 B.2 C.4 D.76.如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为()A. B.C. D.7.已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则()A. B. C. D.8.下列与的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)9.将函数的图像向左平移个单位得到函数的图像,则的最小值为()A. B. C. D.10.复数满足,则复数等于()A. B. C.2 D.-211.等腰直角三角形的斜边AB为正四面体侧棱,直角边AE绕斜边AB旋转,则在旋转的过程中,有下列说法:(1)四面体EBCD的体积有最大值和最小值;(2)存在某个位置,使得;(3)设二面角的平面角为,则;(4)AE的中点M与AB的中点N连线交平面BCD于点P,则点P的轨迹为椭圆.其中,正确说法的个数是()A.1 B.2 C.3 D.412.抛物线y2=ax(a>0)的准线与双曲线C:x28A.8 B.6 C.4 D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和为,且满足,则______14.如图,已知扇形的半径为1,面积为,则_____.15.已知不等式的解集不是空集,则实数的取值范围是;若不等式对任意实数恒成立,则实数的取值范围是___16.设点P在函数的图象上,点Q在函数的图象上,则线段PQ长度的最小值为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点P在抛物线上,且点P的横坐标为2,以P为圆心,为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且.(1)求抛物线C的方程;(2)若抛物线的准线与y轴的交点为H.过抛物线焦点F的直线l与抛物线C交于A,B,且,求的值.18.(12分)已知函数,它的导函数为.(1)当时,求的零点;(2)当时,证明:.19.(12分)在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cosθ,直线l的参数方程为(t为参数,α为直线的倾斜角).(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C有唯一的公共点,求角α的大小.20.(12分)已知两数.(1)当时,求函数的极值点;(2)当时,若恒成立,求的最大值.21.(12分)如图,已知在三棱台中,,,.(1)求证:;(2)过的平面分别交,于点,,且分割三棱台所得两部分几何体的体积比为,几何体为棱柱,求的长.提示:台体的体积公式(,分别为棱台的上、下底面面积,为棱台的高).22.(10分)已知,,,,证明:(1);(2).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
将,,,代入,解得,再分类讨论,利用余弦弦定理求,再用平方关系求解.【详解】已知,,,代入,得,即,解得,当时,由余弦弦定理得:,.当时,由余弦弦定理得:,.故选:C【点睛】本题主要考查余弦定理和平方关系,还考查了对数学史的理解能力,属于基础题.2、A【解析】
画图取的中点M,法一:四边形的外接圆直径为OM,即可求半径从而求外接球表面积;法二:根据,即可求半径从而求外接球表面积;法三:作出的外接圆直径,求出和,即可求半径从而求外接球表面积;【详解】如图,取的中点M,和的外接圆半径为,和的外心,到弦的距离(弦心距)为.法一:四边形的外接圆直径,,;法二:,,;法三:作出的外接圆直径,则,,,,,,,,,.故选:A【点睛】此题考查三棱锥的外接球表面积,关键点是通过几何关系求得球心位置和球半径,方法较多,属于较易题目.3、D【解析】
取中点,过作面,可得为等腰直角三角形,由,可得,当时,最小,由,故,即可求解.【详解】取中点,过作面,如图:则,故,而对固定的点,当时,最小.此时由面,可知为等腰直角三角形,,故.故选:D【点睛】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.4、B【解析】
利用图形作出空间中两直线所成的角,然后利用余弦定理求解即可.【详解】如图,,设为的中点,为的中点,由图可知过且与平行的平面为平面,所以直线即为直线,由题易知,的补角,分别为,设三棱柱的棱长为2,在中,,;在中,,;在中,,,.故选:B【点睛】本题主要考查了空间中两直线所成角的计算,考查了学生的作图,用图能力,体现了学生直观想象的核心素养.5、B【解析】
在等差数列中由等差数列公式与下标和的性质求得,再由等差数列通项公式求得公差.【详解】在等差数列的前项和为,则则故选:B【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.6、D【解析】因为蛋巢的底面是边长为的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为,又因为鸡蛋的体积为,所以球的半径为,所以球心到截面的距离,而截面到球体最低点距离为,而蛋巢的高度为,故球体到蛋巢底面的最短距离为.点睛:本题主要考查折叠问题,考查球体有关的知识.在解答过程中,如果遇到球体或者圆锥等几何体的内接或外接几何体的问题时,可以采用轴截面的方法来处理.也就是画出题目通过球心和最低点的截面,然后利用弦长和勾股定理来解决.球的表面积公式和体积公式是需要熟记的.7、D【解析】
根据X的分布列列式求出期望,方差,再利用将方差变形为,从而可以利用二次函数的性质求出其最大值为,进而得出结论.【详解】由X的分布列可得X的期望为,又,所以X的方差,因为,所以当且仅当时,取最大值,又对所有成立,所以,解得,故选:D.【点睛】本题综合考查了随机变量的期望、方差的求法,结合了概率、二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.8、C【解析】
利用终边相同的角的公式判断即得正确答案.【详解】与的终边相同的角可以写成2kπ+(k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C【点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2)与终边相同的角=+其中.9、B【解析】
根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.【详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,,当时,取得最小值为,故选:.【点睛】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.10、B【解析】
通过复数的模以及复数的代数形式混合运算,化简求解即可.【详解】复数满足,∴,故选B.【点睛】本题主要考查复数的基本运算,复数模长的概念,属于基础题.11、C【解析】
解:对于(1),当CD⊥平面ABE,且E在AB的右上方时,E到平面BCD的距离最大,当CD⊥平面ABE,且E在AB的左下方时,E到平面BCD的距离最小,∴四面体E﹣BCD的体积有最大值和最小值,故(1)正确;对于(2),连接DE,若存在某个位置,使得AE⊥BD,又AE⊥BE,则AE⊥平面BDE,可得AE⊥DE,进一步可得AE=DE,此时E﹣ABD为正三棱锥,故(2)正确;对于(3),取AB中点O,连接DO,EO,则∠DOE为二面角D﹣AB﹣E的平面角,为θ,直角边AE绕斜边AB旋转,则在旋转的过程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正确;对于(4)AE的中点M与AB的中点N连线交平面BCD于点P,P到BC的距离为:dP﹣BC,因为<1,所以点P的轨迹为椭圆.(4)正确.故选:C.点睛:该题考查的是有关多面体和旋转体对应的特征,以几何体为载体,考查相关的空间关系,在解题的过程中,需要认真分析,得到结果,注意对知识点的灵活运用.12、A【解析】
求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值.【详解】抛物线y2=ax(a>0)的准线为x=-a4,双曲线C:x28-y24【点睛】本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
对题目所给等式进行赋值,由此求得的表达式,判断出数列是等比数列,由此求得的值.【详解】解:,可得时,,时,,又,两式相减可得,即,上式对也成立,可得数列是首项为1,公比为的等比数列,可得.【点睛】本小题主要考查已知求,考查等比数列前项和公式,属于中档题.14、【解析】
根据题意,利用扇形面积公式求出圆心角,再根据等腰三角形性质求出,利用向量的数量积公式求出.【详解】设角,则,,所以在等腰三角形中,,则.故答案为:.【点睛】本题考查扇形的面积公式和向量的数量积公式,属于基础题.15、【解析】
利用绝对值的几何意义,确定出的最小值,然后根据题意即可得到的取值范围化简不等式,求出的最大值,然后求出结果【详解】的最小值为,则要使不等式的解集不是空集,则有化简不等式有,即而当时满足题意,解得或所以答案为【点睛】本题主要考查的是函数恒成立的问题和绝对值不等式,要注意到绝对值的几何意义,数形结合来解答本题,注意去绝对值时的分类讨论化简16、【解析】
由解析式可分析两函数互为反函数,则图象关于对称,则点到的距离的最小值的二倍即为所求,利用导函数即可求得最值.【详解】由题,因为与互为反函数,则图象关于对称,设点为,则到直线的距离为,设,则,令,即,所以当时,,即单调递减;当时,,即单调递增,所以,则,所以的最小值为,故答案为:【点睛】本题考查反函数的性质的应用,考查利用导函数研究函数的最值问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)4【解析】
(1)将点P横坐标代入抛物线中求得点P的坐标,利用点P到准线的距离d和勾股定理列方程求出p的值即可;(2)设A、B点坐标以及直线AB的方程,代入抛物线方程,利用根与系数的关系,以及垂直关系,得出关系式,计算的值即可.【详解】(1)将点P横坐标代入中,求得,∴P(2,),,点P到准线的距离为,∴,∴,解得,∴,∴抛物线C的方程为:;(2)抛物线的焦点为F(0,1),准线方程为,;设,直线AB的方程为,代入抛物线方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,则.【点睛】本题考查直线与抛物线的位置关系,以及抛物线与圆的方程应用问题,考查转化思想以及计算能力,是中档题.18、(1)见解析;(2)证明见解析.【解析】
当时,求函数的导数,判断导函数的单调性,计算即为导函数的零点;
当时,分类讨论x的范围,可令新函数,计算新函数的最值可证明.【详解】(1)的定义域为当时,,,易知为上的增函数,又,所以是的唯一零点;(2)证明:当时,,①若,则,所以成立,②若,设,则,令,则,因为,所以,从而在上单调递增,所以,即,在上单调递增;所以,即,故.【点睛】本题主要考查导数法研究函数的单调性,单调性,零点的求法.注意分类讨论和构造新函数求函数的最值的应用.19、(1)当时,直线l方程为x=-1;当时,直线l方程为y=(x+1)tanα;x2+y2=2x(2)或.【解析】
(1)对直线l的倾斜角分类讨论,消去参数即可求出其普通方程;由,即可求出曲线C的直角坐标方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,根据条件Δ=0,即可求解.【详解】(1)当时,直线l的普通方程为x=-1;当时,消去参数得直线l的普通方程为y=(x+1)tanα.由ρ=2cosθ,得ρ2=2ρcosθ,所以x2+y2=2x,即为曲线C的直角坐标方程.(2)把x=-1+tcosα,y=tsinα代入x2+y2=2x,整理得t2-4tcosα+3=0.由Δ=16cos2α-12=0,得cos2α=,所以cosα=或cosα=,故直线l的倾斜角α为或.【点睛】本题考查参数方程化普通方程,极坐标方程化直角坐标方程,考查直线与曲线的关系,属于中档题.20、(1)唯一的极大值点1,无极小值点.(2)1【解析】
(1)求出导函数,求得的解,确定此解两侧导数值的正负,确定极值点;(2)问题可变形为恒成立,由导数求出函数的最小值,时,无最小值,因此只有,从而得出的不等关系,得出所求最大值.【详解】解:(1)定义域为,当时,,令得,当所以在上单调递增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年基因检测技术在遗传性肿瘤易感基因检测准确性及个体化预防报告
- 2025年农产品品牌建设资金申请品牌战略规划与品牌建设研究报告
- 2025年环保行业环保产业废弃物处理技术进展与应用技术进展与应用研究报告
- 成人继续教育2025年线上学习模式创新与教育质量提升策略研究与实践报告
- 2025年远程医疗服务在分级诊疗中的远程医疗与医疗信息化应用案例报告
- 2025年家居行业线上线下融合新零售模式线上线下市场竞争力提升报告
- 2025年绿色建材市场推广与政策支持下的绿色建筑市场增长趋势预测报告
- 2025年冰雪运动主题公园项目智慧化建设与应用研究报告
- 2025年物流金融服务在供应链金融创新模式下的风险评估报告
- 2025年科技与互联网行业物联网技术在智慧城市建设中的应用报告
- GB/T 17468-1998电力变压器选用导则
- 有机化学课件第十九章
- 工程部部门级安全培训课件
- DB42T1745-2021桥梁高强度螺栓连接安装技术指南
- 实验室安全记录表
- 进出口业务内部审计制
- 扬尘污染防治监理实施细则
- 教科版二年级下册各单元知识整理复习及思维导图-课件
- 四年级下册数学课件-3 乘法分配律2-冀教版14张PPT
- 《学弈》优质课教学课件
- 2022年检验科三基试题及答案
评论
0/150
提交评论