版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列选项中,可以用来证明命题“若,则”是假命题的反例的是()A. B. C. D.2.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为3m和4m..按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A.2m B.3m C.4m D.6m3.下列各式中,分式的个数为(),,,,,,A.2个 B.3个 C.4个 D.5个4.若直线经过点和点,直线与关于轴对称,则的表达式为()A. B. C. D.5.在平面直角坐标系中,点A关于x轴的对称点为A1(3,-2),则点A的坐标为()A.(-3,-2) B.(3,2) C.(3,-2) D.(-3、2)6.若,则下列不等式正确的是()A. B. C. D.7.下面各组数中不能构成直角三角形三边长的一组数是()A. B. C. D.8.如图,△ABC中,AB=AC,∠C=72°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为()A.82° B.72° C.60° D.36°9.若的结果中不含项,则的值为()A.2 B.-4 C.0 D.410.已知,则以为三边的三角形的面积为()A. B.1 C.2 D.11.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1 B.2 C.3 D.412.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(),下列四个说法:①,②,③,④.其中说法正确的是()A.①② B.①②③ C.①②④ D.①②③④二、填空题(每题4分,共24分)13.如图所示,一只蚂蚁从点沿数轴向右直爬2个单位到达点,点表示,设点所表示的数为,则的值是__________.14.如果ab>1,ac<1.则直线y=x+不经过第___象限.15.如图,将沿着过中点的直线折叠,使点落在边上的处,称为第1次操作,折痕到的距离记为,还原纸片后,再将沿着过中点的直线折叠,使点落在边上的处,称为第2次操作,折痕到的距离记为,按上述方法不断操作下去…经过第2020次操作后得到的折痕到的距离记为,若,则的值为______.16.如图,在RtABC中,∠C=90°,BD是ABC的平分线,交AC于D,若CD=n,AB=m,则ABD的面积是_______.17.,则__________.18.点关于轴对称的点的坐标为______.三、解答题(共78分)19.(8分)(基础模型)已知等腰直角△ABC,∠ACB=90°,AC=CB,过点C任作一条直线l(不与CA、CB重合),过点A作AD⊥l于D,过点B作BE⊥l于E.(1)如图②,当点A、B在直线l异侧时,求证:△ACD≌△CBE(模型应用)在平面直角坐标性xOy中,已知直线l:y=kx﹣4k(k为常数,k≠0)与x轴交于点A,与y轴的负半轴交于点B.以AB为边、B为直角顶点作等腰直角△ABC.(2)若直线l经过点(2,﹣3),当点C在第三象限时,点C的坐标为.(3)若D是函数y=x(x<0)图象上的点,且BD∥x轴,当点C在第四象限时,连接CD交y轴于点E,则EB的长度为.(4)设点C的坐标为(a,b),探索a,b之间满足的等量关系,直接写出结论.(不含字母k)20.(8分)如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=2,CD=4,BC=8,求四边形ABCD的面积.21.(8分)小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程与所用时间之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____,小明在停留之前的速度为____;(2)求线段的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,时,两人同时到达乙地,求为何值时,两人在途中相遇.22.(10分)已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根.23.(10分)“太原市批发市场”与“西安市批发市场”之间的商业往来频繁,如图,“太原市批发市场”“西安市批发市场”与“长途汽车站”在同一线路上,每天中午12:00一辆客车由“太原市批发市场”驶往“长途汽车站”,一辆货车由“西安市批发市场”驶往“太原市批发市场”,假设两车同时出发,匀速行驶,图2分别是客车、货车到“长途汽车站”的距离与行驶时间之间的函数图像.请你根据图象信息解决下列问题:(1)由图2可知客车的速度为km/h,货车的速度为km/h;(2)根据图2直接写出直线BC的函数关系式为,直线AD的函数关系式为;(3)求点B的坐标,并解释点B的实际意义.24.(10分)化简求值:,其中x=1.25.(12分)某学校为了丰富学生课余生活,开展了“第二课堂”活动,推出了以下四种选修课程:、绘画;、唱歌;、演讲;、书法.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图,请结合统计图中的信息解决下列问题:(1)这次抽查的学生人数是多少人?(2)将条形统计图补充完整;(3)在扇形统计图中,求选课程的人数所对的圆心角的度数;(4)如果该校共有1200名学生,请你估计该校报课程的学生约有多少人?26.某车队要把4000吨货物运到灾区(方案制定后,每天的运货量不变).(1)设每天运输的货物吨数n(单位:吨),求需要的天数;(2)由于到灾区的道路受阻,实际每天比原计划少运20%,因此推迟1天完成任务,求原计划完成任务的天数.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据题意,将选项中a的值代入命题中使得命题不成立即可判断原命题是假命题.【详解】选项中A,B,C都满足原命题,D选项与原命题的条件相符但与结论相悖,则是原命题作为假命题的反例,故选:D.【点睛】本题主要考查了命题的相关知识,熟练掌握真假命题的判断是解决本题的关键.2、B【解析】根据△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积即可求解.【详解】解:在直角△ABC中,BC=4m,AC=3m.则∵中心O到三条支路的距离相等,设距离是r.
∵△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积∴∴3×4=5r+4r+3r
∴r=1.
故O到三条支路的管道总长是1×3=3m.
故选:B.【点睛】此题主要考查了三角形的内心的性质,三角形内心到三角形的各边的距离相等,利用三角形的面积的关系求解是解题的关键.3、B【分析】根据如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【详解】、、分母中含字母,因此是分式;一共有3个;故选B.【点睛】本题考查分式的定义,解题关键是熟练掌握分式的定义.4、B【分析】根据对称的性质得出两个点关于x轴对称的对称点,再根据待定系数法确定函数关系式,求出一次函数即可.【详解】∵直线1经过点(0,4)和点(3,-2),且1与2关于x轴对称,
∴点(0,4)和点(3,-2)于x轴对称点的坐标分别是:(0,-4),(3,2),
∴直线2经过点(0,-4),(3,2),设直线2的解析式为,
把(0,-4)和(3,2)代入直线2的解析式,
则,解得:,故直线2的解析式为:,
故选:B.【点睛】本题主要考查了待定系数法求一次函数解析式以及坐标与图形的性质,正确得出对称点的坐标是解题关键.5、B【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”进行求解即可.【详解】∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,且A1(3,-2)∴A的坐标为(3,2).所以答案为B选项.【点睛】本题主要考查了点关于x轴对称相关问题,熟练掌握相关规律是解题关键.6、B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵m>n,∴m-2>n-2,∴选项A不符合题意;
∵m>n,∴,∴选项B符合题意;∵m>n,∴4m>4n,∴选项C不符合题意;
∵m>n,∴-5m<-5n,∴选项D不符合题意;
故选:B【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.7、D【分析】三角形的三边分别为a、b、c,如果,那么这个三角形是直角三角形.【详解】A.,能构成直角三角形;B.,能构成直角三角形;C.,能构成直角三角形;D.,不能构成直角三角形;故选:D.【点睛】此题考查勾股定理的逆定理,熟记定理并运用解题是关键.8、B【分析】先根据AB=AC,∠C的度数,求出∠ABC的度数,再由垂直平分线的性质求出∠ABD的度数,再由三角形内角与外角的性质解答即可.【详解】解:∵AB=AC,∠C=72°,
∴∠ABC=∠C=72°,∴∠A=36°
∵DE垂直平分AB,
∴∠A=∠ABD=36°,
∴∠BDC=∠A+∠ABD=36°+36°=72°.
故选:B.【点睛】点评:本题考查的是线段垂直平分线的性质及三角形内角和定理、等腰三角形的性质,解答此题的关键是熟知线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.9、D【分析】由的结果中不含项,可知,结果中的项系数为0,进而即可求出答案.【详解】∵==,又∵的结果中不含项,∴1-k=0,解得:k=1.故选D.【点睛】本题主要考查多项式与多项式的乘法法则,利用法则求出结果,是解题的关键.10、B【分析】根据二次根式与偶数次幂的非负性,求出a,b,c的值,从而得到以为三边的三角形是直角三角形,进而即可求解.【详解】∵,∴,又∵,∴,∴a=1,b=2,c=,∴,∴以为三边的三角形是直角三角形,∴以为三边的三角形的面积=.故选B.【点睛】本题主要考查二次根式与偶数次幂的非负性以及勾股定理的逆定理,掌握二次根式与偶数次幂的非负性以及勾股定理的逆定理,是解题的关键.11、D【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出△ABD≌△ACE,由全等三角形的对应边相等得到BD=CE;②由△ABD≌△ACE得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由题意,∠BAE+∠DAC=360°-∠BAC-∠DAE=180°.【详解】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;④由题意,∠BAE+∠DAC=360°-∠BAC-∠DAE=360°-90°-90°=180°,本选项正确;故选D.【点睛】本题考查了全等三角形的判定与性质以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.12、B【详解】可设大正方形边长为a,小正方形边长为b,所以据题意可得a2=49,b2=4;根据直角三角形勾股定理得a2=x2+y2,所以x2+y2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S△=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以,化简得2xy+4=49,式③正确;而据式④和式②得2x=11,x=5.5,y=3.5,将x,y代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B.二、填空题(每题4分,共24分)13、【分析】先根据数轴上点的平移的性质求得m,将m的值代入,根据绝对值的性质()进行化简即可.【详解】解:由题意知,A点和B点的距离为2,A的坐标为,∴B点的坐标为;∴.故答案为:.【点睛】本题考查实数与数轴,化简绝对值,无理数的估算.能估算的正负,并且根据绝对值的意义化简是解决此题的关键.14、一【分析】先根据ab>1,ac<1讨论出a、b、c的符号,进而可得出,的符号,再根据一次函数的图象与系数的关系进行解答即可.【详解】解:∵ab>1,ac<1,∵a、b同号,a、c异号,①当a>1,b>1时,c<1,∴>1,<1,∴直线y=-x+过二、三、四象限;②当a<1,b<1时,c>1,∴>1,<1,∴直线y=-x+过二、三、四象限.综上可知,这条直线不经过第一象限,故答案为:一.【点睛】本题考查的是一次函数的图象与系数的关系,以及分类讨论的数学思想,解答此题的关键是根据ab>1,ac<1讨论出a、b、c的符号,进而可得出,的符号.15、【分析】根据中点的性质及折叠的性质可得DA=DA₁=DB,从而可得∠ADA₁=2∠B,结合折叠的性质可得.,∠ADA₁=2∠ADE,可得∠ADE=∠B,继而判断DE//
BC,得出DE是△ABC的中位线,证得AA₁⊥BC,AA₁=2,由此发现规律:同理…于是经过第n次操作后得到的折痕Dn-1
En-1到BC的距离,据此求得的值.【详解】解:如图连接AA₁,由折叠的性质可得:AA₁⊥DE,DA=
DA₁
,A₂、A₃…均在AA₁上又∵
D是AB中点,∴DA=
DB
,
∵DB=
DA₁
,
∴∠BA₁D=∠B
,
∴∠ADA₁=∠B+∠BA₁D=2∠B,
又∵∠ADA₁
=2∠ADE
,
∴∠ADE=∠B
∵DE//BC,
∴AA₁⊥BC
,
∵h₁=1
∴AA₁
=2,
∴
同理:;
;
…
∴经过n次操作后得到的折痕Dn-1En-1到BC的距离∴【点睛】本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.16、【分析】由已知条件,根据角平分线的性质,边AB上的高等于CD的长n,再由三角形的面积公式求得△ABD的面积.【详解】解:∵BD是∠ABC的平分线,∠C=90°,
∴点D到AB的距离为CD的长,
∴S△ABD=.
故答案为:.【点睛】本题考查了角平分线的性质和三角形面积的计算.本题比较简单,直接应用角平分线的性质进行解题,属于基础题.17、1【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可求解.【详解】∵,
∴x-8=0,y+2=0,
∴x=8,y=-2,
∴x+y=8+(-2)=1.
故答案为:1.【点睛】此题考查算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.18、(5,3)【分析】根据关于x轴对称的点的特点:横坐标相同,纵坐标互为相反数即可得出答案.【详解】点关于x轴对称的点的坐标为故答案为:.【点睛】本题主要考查关于x轴对称的点的特点,掌握关于x轴对称的点的特点是解题的关键.三、解答题(共78分)19、(1)详见解析;(2)(﹣6,﹣2);(3)2;(1)a+b=-1或b﹣a=1.【分析】(1)利用同角的余角相等判断出∠CAD=∠BCE,进而利用AAS即可得出结论;(2)先求出直线l的解析式,进而确定出点A,B坐标,再判断出△ACD≌△CBE,即可得出结论;(3)同(2)的方法可得△OAB≌△FBC,从而得BF=OA=1,再证△BED≌△FEC(AAS),即可得到答案;(1)分点C在第二象限,第三象限和第四象限三种情况:先确定出点A,B坐标,再同(2)(3)的方法确定出点C的坐标(用k表示),即可得出结论.【详解】(1)∵∠ACB=90°,∴∠ACD+∠ECB=90°,∵AD⊥l,BE⊥l,∴∠ADC=∠BEC=90°,∴∠ACD+∠CAD=∠ACD+∠BCE=90°,∴∠CAD=∠BCE,∵CA=CB,∴△ACD≌△CBE(AAS);(2)如图1,过点C作CE⊥y轴于点E,∵直线l:y=kx﹣1k经过点(2,﹣3),∴2k﹣1k=﹣3,∴k=,∴直线l的解析式为:y=x﹣6,令x=0,则y=﹣6,∴B(0,﹣6),∴OB=6,令y=0,则0=x﹣6,∴x=1,∴A(1,0),∴OA=1,同(1)的方法得:△OAB≌△EBC(AAS),∴CE=OB=6,BE=OA=1,∴OE=OB﹣BE=6﹣1=2,∵点C在第三象限,∴C(﹣6,﹣2),故答案为:(﹣6,﹣2);(3)如图2,对于直线l:y=kx﹣1k,令x=0,则y=﹣1k,∴B(0,﹣1k),∴OB=1k,令y=0,则kx﹣1k=0,∴x=1,∴A(1,0),∴OA=1,过点C作CF⊥y轴于F,则△OAB≌△FBC(AAS),∴BF=OA=1,CF=OB=1k,∴OF=OB+BF=1k+1,∵点C在第四象限,∴C(1k,-1k-1),∵B(0,﹣1k),∵BD∥x轴,且D在y=x上,∴D(﹣1k,﹣1k),∴BD=1k=CF,∵CF⊥y轴于F,∴∠CFE=90°,∵BD∥x轴,∴∠DBE=90°=∠CFE,∵∠BED=∠FEC,∴△BED≌△FEC(AAS),∴BE=EF=BF=2,故答案为:2;(1)①当点C在第四象限时,由(3)知,C(1k,-1k-1),∵C(a,b),∴a=1k,b=-1k-1,∴a+b=-1;②当点C在第三象限时,由(3)知,B(0,﹣1k),A(1,0),∴OB=1k,OA=1,如图1,由(2)知,△OAB≌△EBC(AAS),∴CE=OB=1k,BE=OA=1,∴OE=OB﹣BE=1k﹣1,∴C(﹣1k,-1k+1),∵C(a,b),∴a=﹣1k,b=-1k+1,∴b﹣a=1;③当点C在第二象限时,如图3,由(3)知,B(0,﹣1k),A(1,0),∴OB=1k,OA=1,∵△OAB≌△MBC(AAS),∴CM=OB=1k,BM=OA=1,∴OM=BM﹣BO=1﹣1k,∴C(﹣1k,1﹣1k),∵C(a,b),∴a=﹣1k,b=1﹣1k,∴b﹣a=1;④点C不可能在第一象限;综上所述:a+b=-1或b﹣a=1.图3【点睛】本题主要考查三角形全等的判定和性质定理与等腰直角三角形的性质定理以及一次函数图象的综合,掌握“一线三垂直”三角形全等模型,是解题的关键.20、4+8.【解析】试题分析:先根据勾股定理求出BD的长,再根据勾股定理求得BC的长,四边形ABCD的面积是两个直角三角形的面积之和.试题解析:∵AB=AD,∠BAD=90°,AB=,∴BD==4,∵BD2+CD2=42+()2=64,BC2=64,∴BD2+CD2=BC2,∴△BCD为直角三角形,∴S四边形ABCD=S△ABD+S△BCD=××+××4=4+8.21、(1)2,10;(2)s=15t-40;(3)t=3h或t=6h.【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2;小明2小时内行驶的路程是20km,据此可以求出他的速度;
(2)由图象可知:B(4,20),C(5,35),设线段的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;
(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当时,10t=10(t-1);当时,20=10(t-1);当时,15t-40=10(t-1);逐一求解即可.【详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2;由图象可知:小明2小时内行驶的路程是20km,所以他的速度是(km/h);故答案是:2;10.
(2)设线段的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴,∴,∴线段的函数表达式为s=15t-40;
(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50km,∴小华的速度=(km/h),下面分三种情况讨论两人在途中相遇问题:当时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当时,两人在途中相遇,则20=10(t-1),解得t=3;当时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h或t=6h时,两人在途中相遇.【点睛】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.22、(1)a=5,b=2,c=3;(2)3a-b+c的平方根是±1.【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值;(2)把a、b、c的值代入代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵5a+2的立方根是3,3a+b-1的算术平方根是1,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,(2)由(1)可知a=5,b=2,c=3∴3a-b+c=16,3a-b+c的平方根是±1.【点睛】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值是解题关键.23、(1)60,30;(2),;(3)点的坐标为,点代表的实际意义是此时客车和货车相遇.【分析】(1)由图象可知客车6小时行驶的路程是360千米,货车2小时行驶的路程为60千米,从而可以求得客车和货车的速度;(2)先求出点D的横坐标,然后利用待定系数法,利用点(0,360)和(6,0)求出直线BC的解析式,利用点A和点D坐标求出直线AD的解析式,即可得到答案.(3)把直线BC和直线AD联合,组成方程组,即可求出点B的坐标,然后得到答案.【详解】解:由图象可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工程监理委托合同
- 2024年网络密码机项目评估分析报告
- 2024至2030年中国野生苦瓜茶行业投资前景及策略咨询研究报告
- 2023年安神补脑类药物项目评价分析报告
- 2024年红外线气体分析仪项目评估分析报告
- 2024至2030年中国液-液转盘萃取塔数据监测研究报告
- 2024至2030年中国挂臂式牙钻行业投资前景及策略咨询研究报告
- 2024至2030年中国大型模具用气弹簧数据监测研究报告
- 18项医疗核心制度要点
- 内蒙古呼和浩特市(2024年-2025年小学五年级语文)统编版期末考试(下学期)试卷及答案
- 压力管道竣工资料
- 无张力疝修补术后补片感染的临床分析
- 预制钢筋混凝土盾构管片质量验收标准
- 六年级科学上学期期中质量分析
- 油漆用量计算公式表
- 船舶结构与设备 第5章 舵设备
- 桩承台基础与桩筏基础对比成本
- 日事日毕-日清日高PPT
- 厂区内雨水排放管理制度(共1页)
- 部分主板集成LSI1068E芯片的SASRAID设置解析
- 海尔公司网点备件系统操作流程指导
评论
0/150
提交评论