2022年菏泽市重点中学数学高三上期末联考模拟试题含解析_第1页
2022年菏泽市重点中学数学高三上期末联考模拟试题含解析_第2页
2022年菏泽市重点中学数学高三上期末联考模拟试题含解析_第3页
2022年菏泽市重点中学数学高三上期末联考模拟试题含解析_第4页
2022年菏泽市重点中学数学高三上期末联考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,且成等比数列.若的前n项和为,则的最小值为()A. B. C. D.2.已知是等差数列的前项和,若,,则()A.5 B.10 C.15 D.203.在直角梯形中,,,,,点为上一点,且,当的值最大时,()A. B.2 C. D.4.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是()A. B. C.16 D.325.设,,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.已知复数满足:(为虚数单位),则()A. B. C. D.7.是的()条件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要8.已知a,b∈R,,则()A.b=3a B.b=6a C.b=9a D.b=12a9.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数﹔最后根据统计数来估计的值.若,则的估计值为()A. B. C. D.10.已知数列{an}满足a1=3,且aA.22n-1+1 B.22n-1-111.已知双曲线(,)的左、右焦点分别为,以(为坐标原点)为直径的圆交双曲线于两点,若直线与圆相切,则该双曲线的离心率为()A. B. C. D.12.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量=(1,2),=(-3,1),则=______.14.已知集合,,则__________.15.已知实数,满足约束条件则的最大值为________.16.已知是定义在上的偶函数,其导函数为.若时,,则不等式的解集是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,所对的边分别为,,,且.求的值;设的平分线与边交于点,已知,,求的值.18.(12分)如图,在直棱柱中,底面为菱形,,,与相交于点,与相交于点.(1)求证:平面;(2)求直线与平面所成的角的正弦值.19.(12分)如图,在正四棱柱中,,,过顶点,的平面与棱,分别交于,两点(不在棱的端点处).(1)求证:四边形是平行四边形;(2)求证:与不垂直;(3)若平面与棱所在直线交于点,当四边形为菱形时,求长.20.(12分)在直角坐标系中,直线的参数方程为.(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程及的直角坐标方程;(2)求曲线上的点到距离的取值范围.21.(12分)如图,在四棱锥中,平面平面,.(Ⅰ)求证:平面;(Ⅱ)若锐二面角的余弦值为,求直线与平面所成的角.22.(10分)已知,函数.(Ⅰ)若在区间上单调递增,求的值;(Ⅱ)若恒成立,求的最大值.(参考数据:)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

利用等比中项性质可得等差数列的首项,进而求得,再利用二次函数的性质,可得当或时,取到最小值.【详解】根据题意,可知为等差数列,公差,由成等比数列,可得,∴,解得.∴.根据单调性,可知当或时,取到最小值,最小值为.故选:D.【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当或时同时取到最值.2、C【解析】

利用等差通项,设出和,然后,直接求解即可【详解】令,则,,∴,,∴.【点睛】本题考查等差数列的求和问题,属于基础题3、B【解析】

由题,可求出,所以,根据共线定理,设,利用向量三角形法则求出,结合题给,得出,进而得出,最后利用二次函数求出的最大值,即可求出.【详解】由题意,直角梯形中,,,,,可求得,所以·∵点在线段上,设,则,即,又因为所以,所以,当时,等号成立.所以.故选:B.【点睛】本题考查平面向量线性运算中的加法运算、向量共线定理,以及运用二次函数求最值,考查转化思想和解题能力.4、A【解析】几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是,选A.5、A【解析】

根据对数的运算分别从充分性和必要性去证明即可.【详解】若,,则,可得;若,可得,无法得到,所以“”是“”的充分而不必要条件.所以本题答案为A.【点睛】本题考查充要条件的定义,判断充要条件的方法是:①若为真命题且为假命题,则命题p是命题q的充分不必要条件;②若为假命题且为真命题,则命题p是命题q的必要不充分条件;③若为真命题且为真命题,则命题p是命题q的充要条件;④若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.6、A【解析】

利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【详解】由,则,所以.故选:A【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.7、B【解析】

利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。【详解】设对应的集合是,由解得且对应的集合是,所以,故是的必要不充分条件,故选B。【点睛】本题主要考查充分条件、必要条件的判断方法——集合关系法。设,如果,则是的充分条件;如果B则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件。8、C【解析】

两复数相等,实部与虚部对应相等.【详解】由,得,即a,b=1.∴b=9a.故选:C.【点睛】本题考查复数的概念,属于基础题.9、B【解析】

先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.【详解】因为,都是区间上的均匀随机数,所以有,,若,能与构成锐角三角形三边长,则,由几何概型的概率计算公式知,所以.故选:B.【点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.10、D【解析】试题分析:因为an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考点:数列的通项公式.11、D【解析】

连接,可得,在中,由余弦定理得,结合双曲线的定义,即得解.【详解】连接,则,,所以,在中,,,故在中,由余弦定理可得.根据双曲线的定义,得,所以双曲线的离心率故选:D【点睛】本题考查了双曲线的性质及双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.12、A【解析】

基本事件总数,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率.【详解】解:从四个阴数和五个阳数中分别随机选取1个数,基本事件总数,其和等于11包含的基本事件有:,,,,共4个,其和等于的概率.故选:.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、-6【解析】

由可求,然后根据向量数量积的坐标表示可求.【详解】∵=(1,2),=(-3,1),∴=(-4,-1),则=1×(-4)+2×(-1)=-6故答案为-6【点睛】本题主要考查了向量数量积的坐标表示,属于基础试题.14、【解析】

解一元二次不等式化简集合,再进行集合的交运算,即可得到答案.【详解】,,.故答案为:.【点睛】本题考查一元二次不等式的求解、集合的交运算,考查运算求解能力,属于基础题.15、1【解析】

作出约束条件表示的可行域,转化目标函数为,当目标函数经过点时,直线的截距最大,取得最大值,即得解.【详解】作出约束条件表示的可行域是以为顶点的三角形及其内部,转化目标函数为当目标函数经过点时,直线的截距最大此时取得最大值1.故答案为:1【点睛】本题考查了线性规划问题,考查了学生转化划归,数形结合,数学运算能力,属于基础题.16、【解析】

构造,先利用定义判断的奇偶性,再利用导数判断其单调性,转化为,结合奇偶性,单调性求解不等式即可.【详解】令,则是上的偶函数,,则在上递减,于是在上递增.由得,即,于是,则,解得.故答案为:【点睛】本题考查了利用函数的奇偶性、单调性解不等式,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、;.【解析】

利用正弦定理化简求值即可;利用两角和差的正弦函数的化简公式,结合正弦定理求出的值.【详解】解:,由正弦定理得:,,,,,又,为三角形内角,故,,则,故,;(2)平分,设,则,,,,则,,又,则在中,由正弦定理:,.【点睛】本题考查正弦定理和两角和差的正弦函数的化简公式,二倍角公式,考查运算能力,属于基础题.18、(1)证明见解析(2)【解析】

(1)要证明平面,只需证明,即可:(2)取中点,连,以为原点,分别为轴建立空间直角坐标系,分别求出与平面的法向量,再利用计算即可.【详解】(1)∵底面为菱形,∵直棱柱平面.∵平面..平面;(2)如图,取中点,连,以为原点,分别为轴建立如图所示空间直角坐标系:,点,设平面的法向量为,,有,令,得又,设直线与平面所成的角为,所以故直线与平面所成的角的正弦值为.【点睛】本题考查线面垂直的证明以及向量法求线面角的正弦值,考查学生的运算求解能力,本题解题关键是正确写出点的坐标.19、(1)证明见解析;(2)证明见解析;(3).【解析】

(1)由平面与平面没有交点,可得与不相交,又与共面,所以,同理可证,得证;(2)由四边形是平行四边形,且,则不可能是矩形,所以与不垂直;(3)先证,可得为的中点,从而得出是的中点,可得.【详解】(1)依题意都在平面上,因此平面,平面,又平面,平面,平面与平面平行,即两个平面没有交点,则与不相交,又与共面,所以,同理可证,所以四边形是平行四边形;(2)因为,两点不在棱的端点处,所以,又四边形是平行四边形,,则不可能是矩形,所以与不垂直;(3)如图,延长交的延长线于点,若四边形为菱形,则,易证,所以,即为的中点,因此,且,所以是的中位线,则是的中点,所以.【点睛】本题考查了立体几何中的线线平行和垂直的判定问题,和线段长的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,属中档题.20、(1),.(2)【解析】

(1)根据直线的参数方程为(为参数),消去参数,即可求得的的普通方程,曲线的极坐标方程为,利用极坐标化直角坐标的公式:,即可求得答案;(2)的标准方程为,圆心为,半径为,根据点到直线距离公式,即可求得答案.【详解】(1)直线的参数方程为(为参数),消去参数的普通方程为.曲线的极坐标方程为,利用极坐标化直角坐标的公式:的直角坐标方程为.(2)的标准方程为,圆心为,半径为圆心到的距离为,点到的距离的取值范围是.【点睛】本题解题关键是掌握极坐标化直角坐标的公式和点到直线距离公式,考查了分析能力和计算能力,属于中档题.21、(Ⅰ)详见解析;(Ⅱ).【解析】

(Ⅰ)由余弦定理解得,即可得到,由面面垂直的性质可得平面,即可得到,从而得证;(Ⅱ)在平面中,过点作于点,则平面,如图所示建立空间直角坐标系,设,其中,利用空间向量法得到二面角的余弦,即可得到的关系,从而得解;【详解】解:(Ⅰ)证明:在中,,解得,则,从而因为平面平面,平面平面所以平面,又因为平面,所以,因为,,平面,平面,所以平面;(Ⅱ)解:在平面中,过点作于点,则平面,如图所示建立空间直角坐标系,设,其中,则设平面的法向量为,则,即,令,则又平面的一个法向量,则从而,故则直线与平面所成的角为,大小为.【点睛】本题考查线面垂直的判定,面面垂直的性质定理的应用,利用空间向量法解决立体几何问题,属于中档题.22、(Ⅰ);(Ⅱ)3.【解析】

(Ⅰ)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论