版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,若,则向量在向量方向的投影为()A. B. C. D.2.已知函数,其中表示不超过的最大正整数,则下列结论正确的是()A.的值域是 B.是奇函数C.是周期函数 D.是增函数3.命题“”的否定是()A. B.C. D.4.设,,则()A. B. C. D.5.已知双曲线的一条渐近线倾斜角为,则()A.3 B. C. D.6.已知全集,集合,则()A. B. C. D.7.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)8.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为()A. B. C. D.9.函数在的图象大致为()A. B.C. D.10.设且,则下列不等式成立的是()A. B. C. D.11.在三角形中,,,求()A. B. C. D.12.在等腰直角三角形中,,为的中点,将它沿翻折,使点与点间的距离为,此时四面体的外接球的表面积为().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数f(x)=axlnx﹣bx(a,b∈R)在点(e,f(e))处的切线方程为y=3x﹣e,则a+b=_____.14.如图,在正四棱柱中,P是侧棱上一点,且.设三棱锥的体积为,正四棱柱的体积为V,则的值为________.15.若正三棱柱的所有棱长均为2,点为侧棱上任意一点,则四棱锥的体积为__________.16.在矩形ABCD中,,,点E,F分别为BC,CD边上动点,且满足,则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线的极坐标方程为,直线的参数方程为(为参数).(1)求曲线的直角坐标方程与直线的普通方程;(2)已知点,直线与曲线交于、两点,求.18.(12分)“绿水青山就是金山银山”,为推广生态环境保护意识,高二一班组织了环境保护兴趣小组,分为两组,讨论学习.甲组一共有人,其中男生人,女生人,乙组一共有人,其中男生人,女生人,现要从这人的两个兴趣小组中抽出人参加学校的环保知识竞赛.(1)设事件为“选出的这个人中要求两个男生两个女生,而且这两个男生必须来自不同的组”,求事件发生的概率;(2)用表示抽取的人中乙组女生的人数,求随机变量的分布列和期望19.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)若在上恒成立,求的取值范围.20.(12分)某市计划在一片空地上建一个集购物、餐饮、娱乐为一体的大型综合园区,如图,已知两个购物广场的占地都呈正方形,它们的面积分别为13公顷和8公顷;美食城和欢乐大世界的占地也都呈正方形,分别记它们的面积为公顷和公顷;由购物广场、美食城和欢乐大世界围成的两块公共绿地都呈三角形,分别记它们的面积为公顷和公顷.(1)设,用关于的函数表示,并求在区间上的最大值的近似值(精确到0.001公顷);(2)如果,并且,试分别求出、、、的值.21.(12分)在四棱锥中,底面为直角梯形,,,,,,,分别为,的中点.(1)求证:.(2)若,求二面角的余弦值.22.(10分)已知函数.(1)若函数,试讨论的单调性;(2)若,,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由,,,再由向量在向量方向的投影为化简运算即可【详解】∵∴,∴,∴向量在向量方向的投影为.故选:B.【点睛】本题考查向量投影的几何意义,属于基础题2、C【解析】
根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.【详解】由表示不超过的最大正整数,其函数图象为选项A,函数,故错误;选项B,函数为非奇非偶函数,故错误;选项C,函数是以1为周期的周期函数,故正确;选项D,函数在区间上是增函数,但在整个定义域范围上不具备单调性,故错误.故选:C【点睛】本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.3、D【解析】
根据全称命题的否定是特称命题,对命题进行改写即可.【详解】全称命题的否定是特称命题,所以命题“,”的否定是:,.故选D.【点睛】本题考查全称命题的否定,难度容易.4、D【解析】
集合是一次不等式的解集,分别求出再求交集即可【详解】,,则故选【点睛】本题主要考查了一次不等式的解集以及集合的交集运算,属于基础题.5、D【解析】
由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果.【详解】由双曲线方程可知:,渐近线方程为:,一条渐近线的倾斜角为,,解得:.故选:.【点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求.6、D【解析】
根据函数定义域的求解方法可分别求得集合,由补集和交集定义可求得结果.【详解】,,,.故选:.【点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题.7、B【解析】M=y|y=N==x|∴M∩N=(1,2).故选B.8、B【解析】
根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.9、B【解析】
先考虑奇偶性,再考虑特殊值,用排除法即可得到正确答案.【详解】是奇函数,排除C,D;,排除A.故选:B.【点睛】本题考查函数图象的判断,属于常考题.10、A【解析】项,由得到,则,故项正确;项,当时,该不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误.综上所述,故选.11、A【解析】
利用正弦定理边角互化思想结合余弦定理可求得角的值,再利用正弦定理可求得的值.【详解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故选:A.【点睛】本题考查利用正弦定理求值,涉及正弦定理边角互化思想以及余弦定理的应用,考查计算能力,属于中等题.12、D【解析】
如图,将四面体放到直三棱柱中,求四面体的外接球的半径转化为求三棱柱外接球的半径,然后确定球心在上下底面外接圆圆心连线中点,这样根据几何关系,求外接球的半径.【详解】中,易知,翻折后,,,设外接圆的半径为,,,如图:易得平面,将四面体放到直三棱柱中,则球心在上下底面外接圆圆心连线中点,设几何体外接球的半径为,,四面体的外接球的表面积为.故选:D【点睛】本题考查几何体的外接球的表面积,意在考查空间想象能力,和计算能力,属于中档题型,求几何体的外接球的半径时,一般可以用补形法,因正方体,长方体的外接球半径容易求,可以将一些特殊的几何体补形为正方体或长方体,比如三条侧棱两两垂直的三棱锥,或是构造直角三角形法,确定球心的位置,构造关于外接球半径的方程求解.二、填空题:本题共4小题,每小题5分,共20分。13、0【解析】
由题意,列方程组可求,即求.【详解】∵在点处的切线方程为,,代入得①.又②.联立①②解得:..故答案为:0.【点睛】本题考查导数的几何意义,属于基础题.14、【解析】
设正四棱柱的底面边长,高,再根据柱体、锥体的体积公式计算可得.【详解】解:设正四棱柱的底面边长,高,则,即故答案为:【点睛】本题考查柱体、锥体的体积计算,属于基础题.15、【解析】
依题意得,再求点到平面的距离为点到直线的距离,用公式所以即可得出答案.【详解】解:正三棱柱的所有棱长均为2,则,点到平面的距离为点到直线的距离所以,所以.故答案为:【点睛】本题考查椎体的体积公式,考查运算能力,是基础题.16、【解析】
利用平面直角坐标系,设出点E,F的坐标,由可得,利用数量积运算求得,再利用线性规划的知识求出的最大值.【详解】建立平面直角坐标系,如图(1)所示:设,,,即,又,令,其中,画出图形,如图(2)所示:当直线经过点时,取得最大值.故答案为:【点睛】本题考查了向量数量积的坐标运算、简单的线性规划问题,解题的关键是建立恰当的坐标系,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)【解析】
(1)根据极坐标与直角坐标互化公式,以及消去参数,即可求解;(2)设两点对应的参数分别为,,将直线的参数方程代入曲线方程,结合根与系数的关系,即可求解.【详解】(1)对于曲线的极坐标方程为,可得,又由,可得,即,所以曲线的普通方程为.由直线的参数方程为(为参数),消去参数可得,即直线的方程为,即.(2)设两点对应的参数分别为,,将直线的参数方程(为参数)代入曲线中,可得.化简得:,则.所以.【点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标方程的互化,以及直线的参数方程的应用,着重考查了推理与运算能力,属于基础题.18、(Ⅰ);(Ⅱ)分布列见解析,.【解析】
(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由题得可能取值为,再求x的分布列和期望.【详解】(Ⅰ)(Ⅱ)可能取值为,,,,,的分布列为0123.【点睛】本题主要考查古典概型的计算,考查随机变量的分布列和期望的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1);(2)【解析】
(1),对函数求导,分别求出和,即可求出在点处的切线方程;(2)对求导,分、和三种情况讨论的单调性,再结合在上恒成立,可求得的取值范围.【详解】(1)因为,所以,所以,则,故曲线在点处的切线方程为.(2)因为,所以,①当时,在上恒成立,则在上单调递增,从而成立,故符合题意;②当时,令,解得,即在上单调递减,则,故不符合题意;③当时,在上恒成立,即在上单调递减,则,故不符合题意.综上,的取值范围为.【点睛】本题考查了曲线的切线方程的求法,考查了利用导数研究函数的单调性,考查了不等式恒成立问题,利用分类讨论是解决本题的较好方法,属于中档题.20、(1),最大值公顷;(2)17、25、5、5.【解析】
(1)由余弦定理求出三角形ABC的边长BC,进而可以求出,,由面积公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表达式求出,。【详解】(1)由余弦定理得,,所以,,同理可得又,所以,故在区间上的最大值为,近似值为。(2)由(1)知,,,所以,进而,由知,,,故、、、的值分别是17、25、5、5。【点睛】本题主要考查利用余弦定理解三角形以及同角三角函数平方关系的应用,意在考查学生的数学建模以及数学运算能力。21、(1)见解析(2)【解析】
(1)由已知可证明平面,从而得证面面垂直,再由,得线面垂直,从而得,由直角三角形得结论;(2)以为轴建立空间直角坐标系,用空间向量法示二面角.【详解】(1)证明:连接,,.,,平面.平面,平面平面.,为的中点,.平面平面,平面.平面,.为斜边的中点,,(2),由(1)可知,为等腰直角三角形,则.以为坐标原点建立如图所示的空间直角坐标系,则,,,,则,记平面的法向量为由得到,取,可得,则.易知平面的法向量为.记二面角的平面角为,且由图可知为锐角,则,所以二面角的余弦值为.【点睛】本题考查用面面垂直的性质定理证明线面垂直,从而得线线垂直,考查用空间向量法求二面角.在立体几何中求异面直线成的角、直线与平面所成的角、二面角等空间角时,可以建立空间直角坐标系,用空间向量法求解空间角,可避免空间角的作证过程,通过计算求解.22、(1)答案不唯一,具体见解析(2)【解析】
(1)由于函数,得出,分类讨论当和时,的正负,进而得出的单调性;(2)求出,令,得,设,通过导函数,可得出在上的单调性和值域,再分类讨论和时,的单调性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国政法大学《工程中的数值方法C》2023-2024学年第一学期期末试卷
- 郑州西亚斯学院《现代通信原理》2023-2024学年第一学期期末试卷
- 长江工程职业技术学院《公共服务质量管理》2023-2024学年第一学期期末试卷
- 消费级3D打印机打印精度改进
- 保险行业基础讲解模板
- 业务操作-房地产经纪人《业务操作》名师预测卷4
- 开学晨会发言稿
- 二零二五年政府形象广告服务合同规范
- 二零二五版国际学校外教引进与团队建设协议3篇
- 2024-2025学年新疆乌鲁木齐四十一中高二(上)期末数学试卷(含答案)
- 《道路交通安全法》课件完整版
- 向女朋友认错保证书范文
- 五分数加法和减法(课件)-数学五年级下册
- 2024年四川省绵阳市中考语文试卷(附真题答案)
- 设计材料与工艺课程 课件 第1章 产品设计材料与工艺概述
- 幼儿园反恐防暴技能培训内容
- 食品企业质检员聘用合同
- 中医诊所内外部审计制度
- 自然辩证法学习通超星期末考试答案章节答案2024年
- 2024年国家危险化学品经营单位安全生产考试题库(含答案)
- 护理员技能培训课件
评论
0/150
提交评论