版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
微专题(一)大题专攻——“立体几何”大题的规范解题路径立体几何问题重在“建”——建模、建系立体几何解答题的基本模式是论证推理与计算相结合,以某个几何体为依托,分步设问,逐层加深.解决这类题目的原则是建模、建系.建模——将问题转化为平行模型、垂直模型、平面化模型及角度、距离等的计算模型,有时也需建立函数模型;建系——依托于题中的垂直条件,建立空间直角坐标系,利用空间向量求解.[解题示范][典例]
(2021·新高考Ⅰ卷)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)证明:OA⊥CD.(2)若△OCD是边长为1的等边三角形,点E在棱AD上,DE=2EA,且二面角E-BC-D的大小为45°,求三棱锥A-BCD的体积.[关键点拨]1.利用法向量求解空间角的关键在于“四破”2.解答立体几何问题,应具备以下5点思维(1)由于空间图形问题往往可转化为平面图形问题加以解决,因此要注意平面几何知识在解题中的灵活运用.例如,证线线平行可以利用三角形、梯形的中位线性质定理,还可以利用比例关系;证线线垂直可以利用菱形、正方形的对角线互相垂直,还可以利用勾股定理的逆定理.(2)立体几何中证明有关平行或垂直问题时,由于大多数问题主要考查的是有关判定定理在证题中的灵活运用,所以我们要优先考虑对应的判定定理去寻找证题思路.(3)立体几何中证明有关平行或垂直问题时,若对应的判定定理不便于运用,则应该及时考虑其他的证题思路.例如,要证线面平行,可以先证面面平行,再利用面面平行的性质;要证明线面垂直,可以先证面面垂直,再利用面面垂直的性质.(4)分析、解决有关立体几何问题时,往往需要考虑数形结合思想、分类与整合思想、转化思想在解题中的灵活应用.(5)由于立体几何解答题侧重考查空间向量法在解题中的灵活运用,所以必须熟练掌握利用空间向量法求解空间角的具体过程.[应用体验](2022·全国乙卷)如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.解:(1)证明:因为AD=CD,∠ADB=∠CDB,DB=DB,所以△ADB≌△CDB,所以AB=BC.因为E为AC的中点,所以AC⊥BE,AC⊥DE,又BE∩DE=E,BE,DE⊂平面BED,所以AC⊥平面BED,又AC⊂平面ACD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财产土地分割协议范本
- 工程质量管理工作实施方案
- 工程造价专业答辩专业题库
- 工程学院作业1
- 江西省吉安市2024年七年级上学期期中数学试题【附答案】
- 广东省廉江市实验学校2016-2017学年高一上学期语文限时训练一B
- 课时作业10 名篇名句默写
- 安徽省安庆市铜陵市池州市2023-2024学年高一下学期7月联合期末检测试题物理
- 广东省廉江市实验学校2016-2017学年高一上学期语文限时训练四A
- 工程项目合作协议
- 关于IPO、借壳上市和资产重组的比较
- 全省大集中的财政(预算)管理一体化:系统总体业务架构与业务流程、横向纵向业务衔接一体化设计
- 最全的封头尺寸及重量自动计算
- (深圳市2005年)关于建筑工程质量检测收费标准问题及复函
- 女儿墙顶悬挑飘板高层屋顶挑檐外飘模板支撑施工工法范本
- 2021年医学装备管理委员会工作总结
- 装饰工程技术标(完整版)
- 初中物理《压强》PPT课件
- XX有限公司银行业金融机构债权人委员会协议
- 护理安全管理督查表
- 安德森症状评估量表.doc
评论
0/150
提交评论