解三角形单元教学设计_第1页
解三角形单元教学设计_第2页
解三角形单元教学设计_第3页
解三角形单元教学设计_第4页
解三角形单元教学设计_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《解三角形》单元教学设计一、单元整体目标分析本单元教学目标:本章的中心内容是解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:1.知识与技能目标:①掌握正弦定理、余弦定理及面积公式,并能正确应用定理解三角形。②初步运用正弦定理、余弦定理解决测量距离、物体高度等有关的实际问题。③通过解三角形培养学生的方程思想、化归思想、函数思想,并培养学生解题的优化意识。2过程与方法:①通过对任意三角形边角关系的探索,掌握正弦定理、余弦定理,并能解决些简单的三角形度量问题。②能应用正弦定理、余弦定理等知识和方法解决一些测量与几何计算有关的实际问题。③通过解三角形在实际中的一些应用, 开放多种思路,引导学生发现问题,培养学生分析问题、解决问题的能力。3.情感与价值观:①培养和发展学生数学应用意识,渗透励志教育。②在经历建立方程模型解决实际问题的过程中,体方程思想、建模思想,并体会方程的应用价值。③通过学习培养自己学习数学的兴趣和信心;提高学习能力,增强和他人合作的意识,同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力。二、要素分析1、数学视角的分析解三角形一章是在初中“解直角三角形”和前面的“向量”相关内容基础上构建起来的,定理本身的应用十分广泛。解三角形是三角函数知识和平面向量知识在三角形中的具体运用,是将生产、生活实际问题转化为解三角形计算问题的重要工具,具有广泛的应用价值。解三角形问题和大量需要用解三角形为工具的实际问题的存在,以及数学本身和实际问题都在促使正弦定理,余弦定理的产生。在实际工作中经常遇到很多测量问题,如:在航行途中测出海上两个岛屿之间的距离;测量底部不可到达的建筑物的高度;在水平飞行中的飞机上测量飞机下方山顶的海拔高度;测量海上航行的轮船航速和航向等。本章知识的介绍将很好的解决这些问题,从而提高学生解决实际问题的能力。2、《课标》视角的分析新课程改革中,新普通高中《数学课程标准》(以下简称《标准》)对“解三角形”的教学要求是:通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题,能够运用正弦定理、余弦定理等知识和方法解决-些与测量和几何计算有关的实际问题,《标准》在计算方面降低了要求,取消了“利用计算器解决解斜三角形的计算问题”的要求,而在探索推理方面提高了要求,侧重点放在学生探究和推理能力的培养上,要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。《标准》更关注运用正弦定理、余弦定理等知识和方法解决些与测量和几何计算有关的实际问题。3、教学内容分析(1)正弦、余弦定理的证明,培养了学生实践操作能力,以及提出问题、解决问题等研究性学习的能力进步拓展学生的数学活动空间,发展学生“做数学”“用数学”的意识,激发学生的学习兴趣。(2)体现数学与经济、生活等现实世界的联系,培养和发展学生利用解三角形的知识解决身边实际问题的能力。在解三角形的应用中,关键是把实际问题转化成数学问题,这种转化对于实际问题的解决是非常重要的,通过本章知识的学习,将进一步提高学生的数学建模能力。(3)有利于关注数学知识的来龙去脉,解三角形问题是现实的要求,数学本身和实际问题都在促进正弦定理和余弦定理的产生,应用定理解决s角形的边角关系的度量,为学生今后实际工作储备了知识能力4、学情分析本章内容的授课对象为高二级学生。本章之前,学生已经学习了三角函数、向量等基本知识,学生已有一定的知识储备,对观察分析、解决问题的能力有了定的培养,但对前后知识间的联系、理解、应用有一定难度,应用数学知识的意识不强,看待与分析问题不深入,知识的系统性不完善,因此思维灵活性受到制约,学生学习方面有一定困难。根据这些特点,我采用与新课标要求相一致的新的教学方式,即活动式的教学法和任务型教学法相结合的方法,调动全班学生的积极性,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦,在师生互动、生生互动中实现教学任务和目标。5、教学方法分析本单元的重点是综合应用正弦定理、余弦定理,难点是运用正弦定理、余弦定理等知识和方法解决-些与测量和几何计算有关的实际问题。为了突破难点,教学中采用对比研究的方法,“启发、引导、类比”相结合,让学生经历一个“实验、探索、归纳”的科学教学过程,体现从特殊到一般的认识规律,通过学生“动手、动脑、讨论、演练”,增加学生的参与机会,增强参与意识,教给学生获取知江品设备田老问盛故亡生体些生古正战为数学土休在地理精6、本单元重点、难点分析重点:掌握正弦定理、余弦定理以及面积公式,并能正确应用定理解三角形。难点:能应用正弦定理、余弦定理等知识和方法解决一些测量与几何计算有关的实际问题。三、教学流程设计课时划分建议:正弦定理与余弦定理(2个课时);应用举例(1个课时);实习作业(1课时),总共4个课时。教学内容课时安排任务设计正弦定理与余弦定理约2课时定理,方程,求正弦,求余弦,相互变形,列出两个的相互转换应用举例约1课时运用正,余弦定理知识方法求解距离问题(重点)。能从实际问题中抽象出数学模型(难点)实习作业约1课时学习解三角形,用PPT为学生介绍正弦定理,余弦定理,并用余弦定理来描述生活中的事件,解决问题四、课例设计正弦定理教学活动设计方案课题正弦定理教材人教版必修5教师李俊清教学目标知识与技能目标:通过对三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及能利用正弦定理解决简单的实际问题。过程与方法目标:让学生从实际问题出发,结合以前学过的直角三角形中的边角关系,引导学生不断的观察,比较,分析,采取从特殊到一般的以及合情推理的方法发现并证明正弦定理,使学生体会完全归纳法在定理证明中的应;让学生在应用定理解决问题的过程中更深入的理解定理及其作用。情感与价值观目标:面向全体学生,创造平等的教学氛围,通过学生之间,师生之间的交流,合作和评价,发现并证明正弦定理。从发现与证明的过程中体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲。培养学生处理解三角形问题的运算能力和探索数学规律的推理能力,并培养学生坚韧不的意志,实事求是的科学态度和乐于探索,勇于创新的精神。教学重难点教学重点:正弦定理应用以及公式变形,利用正弦定理进行边角互换。教学难点:运用正弦定理解决有关斜三角形问题,利用正弦定理进行边角互换。解决措施:尽量使教学过程更为直观,在讲解相应定理时辅助于相应的习题练习。教学方法探究式、启发式教学用具Ppt,计算机,黑板教学活动设计创设问题情境、引入新课提出问题:分类边角关系直角三角形勾股定理、三角函数一般三角形循序渐进提出问题,引导学生很据已有知识进行思考,从而为新知识的学习奠定基础。形成问题、明确探究方向(1)三边:a+b>c,a+c>b,b+c>a(2)三角:A+B+C=180°(3)边角:大边对大角(4)如图所示,由三角函数得ACBa=3b=4c=5符合关系式:同学们心中可能有很多疑问:1这个式子只对直角三角形成立吗对一般三角形呢2.如果对一般三角形成立的话证明的过程是什么样的3.这个公式的应用有没有限制让我们带着问题一起来计算三角函数,验证是否成立。通过老师引导,学生回答,解决疑问。相互协作、开展探究活动下面我们对任意三角形作个计算:C=a=b=C=°B=°A=°===ABC=则定理对任意三角形均成立。四、课堂练习在△ABC中,若b=1,c=eq\r(3),∠C=eq\f(2π,3),则a=________.解析:由正弦定理,有eq\f(\r(3),sin\f(2π,3))=eq\f(1,sinB),∴sinB=eq\f(1,2).∵∠C为钝角,∴∠B必为锐角,∴∠B=eq\f(π,6),∴∠A=eq\f(π,6).∴a=b=1.预备例题:1.在△ABC中,已知BC=eq\r(5),sinC=2sinA,则AB=________.2.在△ABC中,B=30°,C=120°,则a∶b∶c=________.五、课时小结正弦定理:我们来总结一下遇到这样的三角形应用题我们该怎么做呢求解应用题中三角形的一般步骤:1、分析题意,弄清已知和所求;2、根据题意画出示意图;3、将实际问题转化为数学问题,写出已知所求;4、正确运用正弦定理。五、单元教学设计自我反思本单元从解三角形的问题出发,通过精讲例题,扎实练习,可以很好的巩固正弦定理和余弦定理以及运用定理解决实际问题,但教学中还存在改进的几点:1.学习了正弦定理、余弦定理及面积公式后,如何建立方程,正确选用正弦定理、余弦定理及其变式解三角形方面存在障碍。2、三角形的面积公式灵活性运用解题效果欠缺,只能简单套用公用,不能活用、变用公式,教学中适当穿插历年高考真题,引领教学。3、运用定理解决实际问题时,不能灵活根据两个定理寻找到多种解決问题的方案,尤其是最优解决方案。4、解决实际问题中抽象概括能力欠缺,即不能从具体问题中抽象得到数学模型,再通过推理演算,得出数学模型的解,再还原成实际问题的解。5、

要重视学生的创造能力和创新意识的培养数学。教学要设法鼓励学生去探索、猜想和发现,培养学生的问题意识,经常地启发学生去思考,提出问题。在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。6、重视认真完成实习作业。实习作业是让学生进一步巩固所学的知识,提高学生分析问题解决实际问题的能力、动手操作的能力以及用数学语言

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论