版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.点在()A.第一象限 B.第二象限 C.第二象限 D.第四象限2.已知在四边形ABCD中,,,M,N分别是AD,BC的中点,则线段MN的取值范围是()A. B. C. D.3.“等腰三角形两底角相等”的逆命题是()A.等腰三角形“三线合一”B.底边上高和中线重合的三角形等腰C.两个角互余的三角形是等腰三角形D.有两个角相等的三角形是等腰三角形4.如图,已知点A(1,-1),B(2,3),点P为x轴上一点,当|PA-PB|的值最大时,点P的坐标为()A.(-1,0) B.(,0) C.(,0) D.(1,0)5.下列因式分解结果正确的是()A. B.C. D.6.如图,下列推理及所证明的理由都正确的是()A.若,则,理由是内错角相等,两直线平行B.若,则,理由是两直线平行,内错角相等C.若,则,理由是内错角相等,两直线平行D.若,则,理由是两直线平行,内错角相等7.下列计算正确的是()A.a6÷a2=a3 B.(a3)2=a5C.25=±5 D.8.如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.29.如图,在中,,,点、分别在边、上,,点是边上一动点,当的值最小时,,则为()A. B. C. D.10.若(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,则常数a、b的值为()A.a=1,b=﹣1 B.a=﹣1,b=1 C.a=1,b=1 D.a=﹣1,b=﹣111.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,这两个对应三角形(如图)的对应点所具有的性质是().A.对应点所连线段都相等 B.对应点所连线段被对称轴平分C.对应点连线与对称轴垂直 D.对应点连线互相平行12.下列线段长能构成三角形的是()A.3、4、8 B.2、3、6 C.5、6、11 D.5、6、10二、填空题(每题4分,共24分)13.如图,在中,,,分别是,的中点,在的延长线上,,,,则四边形的周长是____________.14.使代数式有意义的x的取值范围是______________.15.已知为实数,且,则______.16.3184900精确到十万位的近似值是______________.17.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是________.18.若分式方程有增根,则m=________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,直线l过点M(1,0)且与y轴平行,△ABC的三个顶点的坐标分别为A(-2,5),B(-4,3),C(-1,1).(1)作出△ABC关于x轴对称;(2)作出△ABC关于直线l对称,并写出三个顶点的坐标.(3)若点P的坐标是(-m,0),其中m>0,点P关于直线l的对称点P1,求PP1的长.
20.(8分)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.21.(8分)(1)如图1,在和中,点、、、在同一条直线上,,,,求证:.(2)如图2,在中,,将在平面内绕点逆时针旋转到的位置,使,求旋转角的度数.22.(10分)某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑.白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.23.(10分)如图,在平面直角坐标系中,一次函数的图象过点A(4,1)与正比例函数()的图象相交于点B(,3),与轴相交于点C.(1)求一次函数和正比例函数的表达式;(2)若点D是点C关于轴的对称点,且过点D的直线DE∥AC交BO于E,求点E的坐标;(3)在坐标轴上是否存在一点,使.若存在请求出点的坐标,若不存在请说明理由.24.(10分)如图,在中,,点是直线上一点.(1)如图1,若,点是边的中点,点是线段上一动点,求周长的最小值.(2)如图2,若,,是否存在点,使以,,为顶点的三角形是等腰三角形,若存在,请直按写出线段的长度:若不存在,请说明理由.25.(12分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.26.如图,平面直角坐标系中,A,B,以B点为直角顶点在第二象限内作等腰Rt△ABC.(1)求点C的坐标;(2)求△ABC的面积;(3)在y轴右侧是否存在点P,使△PAB与△ABC全等?若存在,直接写出点P的坐标,若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、A【解析】根据平面直角坐标系中,点所在象限和点的坐标的特点,即可得到答案.【详解】∵1>0,2>0,∴在第一象限,故选A.【点睛】本题主要考查点的横纵坐标的正负性和点所在的象限的关系,熟记点的横纵坐标的正负性和所在象限的关系,是解题的关键.2、B【分析】利用中位线定理作出辅助线,利用三边关系可得MN的取值范围.【详解】连接BD,过M作MG∥AB,连接NG.∵M是边AD的中点,AB=3,MG∥AB,∴MG是△ABD的中位线,BG=GD,;∵N是BC的中点,BG=GD,CD=5,∴NG是△BCD的中位线,,在△MNG中,由三角形三边关系可知NG-MG<MN<MG+NG,即,∴,当MN=MG+NG,即MN=1时,四边形ABCD是梯形,故线段MN长的取值范围是1<MN≤1.故选B.【点睛】解答此题的关键是根据题意作出辅助线,利用三角形中位线定理及三角形三边关系解答.3、D【分析】直接交换原命题的题设和结论即可得到正确选项.【详解】解:“等腰三角形两底角相等”的逆命题是有两个角相等的三角形是等腰三角形,故选:D.【点睛】本题考查互逆命题,解题的关键是掌握逆命题是直接交换原命题的题设和结论.4、B【分析】由题意作A关于x轴对称点C,连接BC并延长,BC的延长线与x轴的交点即为所求的P点;首先利用待定系数法即可求得直线BC的解析式,继而求得点P的坐标.【详解】解:作A关于x轴对称点C,连接BC并延长交x轴于点P,∵A(1,-1),∴C的坐标为(1,1),连接BC,设直线BC的解析式为:y=kx+b,∴,解得,∴直线BC的解析式为:y=2x-1,当y=0时,x=,∴点P的坐标为:(,0),∵当B,C,P不共线时,根据三角形三边的关系可得:|PA-PB|=|PC-PB|<BC,∴此时|PA-PB|=|PC-PB|=BC取得最大值.故选:B.【点睛】本题考查轴对称、待定系数法求一次函数的解析式以及点与一次函数的关系.此题难度较大,解题的关键是找到P点,注意数形结合思想与方程思想的应用.5、D【分析】利用提取公因式法、完全平方公式逐项进行因式分解即可.【详解】解:A、原式,故本选项不符合题意;B、原式,故本选项不符合题意;C、原式,故本选项不符合题意;D、原式,故本选项符合题意,故选:D.【点睛】本题考查了提公因式法与公式法分解因式,属于基础题,关键是掌握因式分解的方法.6、D【分析】根据平行线的性质与判定定理逐项判断即可.【详解】解:A、若,则,理由是两直线平行,内错角相等,故A错误;B、若,不能判断,故B错误;C、若,则,理由是两直线平行,内错角相等,故C错误;D、若,则,理由是两直线平行,内错角相等,正确,故答案为:D.【点睛】本题考查了平行线的性质与判定定理,解题的关键是熟练掌握平行线的性质与判定定理.7、D【详解】解:A、a6÷a2=a6-2=a4≠a3,故本选项错误;B、(a3)2=a3×2=a6≠a5,故本选项错误;C、25=5,表示25的算术平方根式5,25≠±5,故本选项错误;D、3-8故选D.【点睛】本题考查立方根;算术平方根;幂的乘方与积的乘方;同底数幂的除法.8、B【解析】根据等边三角形的性质和含30°的直角三角形的性质解答即可.【详解】∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.【点睛】考查含30°的直角三角形的性质,关键是根据等边三角形的性质和含30°的直角三角形的性质解答.9、B【分析】延长至点,使,过点作于点,交于点,则此时的值最小.最后根据直角三角形的边角关系求解即可.【详解】如图,延长至点,使,过点作于点,交于点,则此时的值最小.在中,,.,,,.,.,,.,,.在中,,.,,.故选B.【点睛】本题考查了最短路径问题,涉及到最短路径问题,一般要考虑线段的性质定理,结合轴对称变换来解决,因此利用轴对称找到对称点是解题的关键.10、A【分析】根据多项式乘以多项式法则展开,即可得出﹣1+a=1,﹣b﹣a=1,求出即可.【详解】解:(x+a)(x2﹣x﹣b)=x3﹣x2﹣bx+ax2﹣ax﹣ab=x3+(﹣1+a)x2+(﹣b﹣a)x﹣ab,∵(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,∴﹣1+a=1,﹣b﹣a=1,∴a=1,b=﹣1,故选:A.【点睛】本题考查了多项式乘以多项式法则的应用,关键根据(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,得出方程-1+a=1,-b-a=1.11、B【分析】直接利用轴对称图形的性质得出对应点之间的关系.【详解】轴对称图形是把图形沿着某条直线对折,直线两旁的部分能够完全重合的图形,而这条直线叫做对称轴,由题意知,两图形关于直线对称,则这两图形的对应点连线被对称轴直线垂直平分,当图形平移后,两图形的对应点连线只被对称轴直线平分.故选B.【点睛】本题主要考查轴对称图形的性质,熟悉掌握性质是关键.12、D【分析】根据三角形任意两边之和都大于第三边逐个判断即可.【详解】解:A、3+4<8,不符合三角形三边关系定理,故本选项错误;B、2+3<6,不符合三角形三边关系定理,故本选项错误;C、5+6=11,不符合三角形三边关系定理,故本选项错误;D、5+6>10,6+10>5,5+10>6,符合三角形三边关系定理,故本选项正确;故选D.【点睛】本题考查了三角形的三边关系定理的应用,主要考查学生对三角形的三边关系定理的理解能力,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.二、填空题(每题4分,共24分)13、1【分析】根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而求得其周长.【详解】解:在Rt△ABC中,∵AC=6,AB=8,∴BC=10,∵E是BC的中点,∴AE=BE=5,∴∠BAE=∠B,∵∠FDA=∠B,∴∠FDA=∠BAE,∴DF∥AE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC=3,∴四边形AEDF是平行四边形∴四边形AEDF的周长=2×(3+5)=1.故答案为:1.【点睛】本题考查三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.14、【分析】根据二次根式中被开方数大于等于0得到,再解不等式即可求解.【详解】解:由二次根式中被开方数大于等于0可知:解得:x≥-1,故答案为:x≥-1.【点睛】本题考查了二次根式有意义的条件及一元一次不等式的解法,属于基础题,熟练掌握不等式解法是解决本题的关键.15、或.【解析】根据二次根式有意义的条件可求出x、y的值,代入即可得出结论.【详解】∵且,∴,∴,∴或.故答案为:或.【点睛】本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x、y的值.16、【分析】根据科学记数法和近似值的定义进行解答.【详解】【点睛】考点:近似数和有效数字.17、9:1【解析】试题分析:由图中可以看出,此时的时间为9:1.考点:镜面对称.18、-1【分析】首先根据分式方程的解法求出x的值,然后根据增根求出m的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.三、解答题(共78分)19、(1)答案见解析;(2)答案见解析,点A2(4,5),点B2(6,3),点C2(3,1);(3)PP1=2+2m【分析】(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接;
(2)分别作出点A、B、C关于直线l对称的点,然后顺次连接,并写出△A2B2C2三个顶点的坐标(3)根据对称的性质即可得出答案.【详解】解:(1)如图所示,即为所求;
(2)如图所示,△A2B2C2即为所求,由图可知,点A2的坐标是(4,5),点B2的坐标是(6,3),点C2的坐标是(3,1);(3)PP1=2(1+m)=2+2m.【点睛】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.20、5<c<1【分析】由a2+b2=10a+8b-41,得a,b的值,然后利用三角形的三边关系求得c的取值范围即可.【详解】解:∵满足a2+b2=10a+8b-41,
∴a2-10a+25+b2-8b+16=0,
∴(a-5)2+(b-4)2=0,
∵(a-5)2≥0,(b-4)2≥0,
∴a-5=0,b-4=0,
∴a=5,b=4;
∴5-4<c<5+4,
∵c是最长边,
∴5<c<1.【点睛】考查了配方法的应用、非负数的性质及三角形的三边关系,解题的关键是对方程的左边进行配方,难度不大.21、(1)见解析;(2).【分析】(1)根据“”可证,可得;(2)由平行线的性质和旋转的性质可求,由三角形内角和定理可求旋转角的度数.【详解】(1)证明:,,在和中,,,;(2),,绕点旋转得到,,,.所以旋转角为.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,平行线的性质,三角形内角和定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.22、(1)学校购进黑文化衫160件,白文化衫40件;(2)该校这次义卖活动共获得3800元利润.【分析】(1)设学校购进黑文化衫x件,白文化衫y件,根据两种文化衫200件共花费4800元,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总利润=每件利润×数量,即可求出结论.【详解】解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45-25)×160+(35-20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.【点睛】本题考查二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23、(1)一次函数表达式为:;正比例函数的表达式为:;(2)E(-2,-3);(3)P点坐标为(,0)或(,0)或(0,2)或(0,-2).【分析】(1)将点A坐标代入可求出一次函数解析式,然后可求点B坐标,将点B坐标代入即可求出正比例函数的解析式;(2)首先求出点D坐标,根据DE∥AC设直线DE解析式为:,代入点D坐标即可求出直线DE解析式,联立直线DE解析式和正比例函数解析式即可求出点E的坐标;(3)首先求出△ABO的面积,然后分点P在x轴和点P在y轴两种情况讨论,设出点P坐标,根据列出方程求解即可.【详解】解:(1)将点A(4,1)代入得,解得:b=5,∴一次函数解析式为:,当y=3时,即,解得:,∴B(2,3),将B(2,3)代入得:,解得:,∴正比例函数的表达式为:;(2)∵一次函数解析式为:,∴C(0,5),∴D(0,-5),∵DE∥AC,∴设直线DE解析式为:,将点D代入得:,∴直线DE解析式为:,联立,解得:,∴E(-2,-3);(3)设直线与x轴交于点F,令y=0,解得:x=5,∴F(5,0),∵A(4,1),B(2,3),∴,当点P在x轴上时,设P点坐标为(m,0),由题意得:,解得:,∴P点坐标为(,0)或(,0);当点P在y轴上时,设P点坐标为(0,n),由题意得:,解得:,∴P点坐标为(0,2)或(0,-2),综上所示:P点坐标为(,0)或(,0)或(0,2)或(0,-2).【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数的性质以及一次函数图象交点的求法,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数解析式;(2)利用平行直线的系数k相等求出直线DE解析式;(3)求出△ABO的面积,利用方程思想和分类讨论思想解答.24、(1);(2)存在,CD=1或8或或.【分析】(1)本小题是典型的“将军饮马”问题,只要作点C关于直线AB的对称点E,连接BE、DE,DE交AB于点M,如图1,则此时的周长最小,且最小值就是CD+DE的长,由于CD易求,故只要计算DE的长即可,由轴对称的性质和等腰直角三角形的性质可得BE=BC=2,∠DBE=90°,然后根据勾股定理即可求出DE,问题即得解决;(2)由于点是直线上一点,所以需分三种情况讨论:①当AB=AD时,如图4,根据等腰三角形的性质求解即可;②当BD=BA时,如图5,根据勾股定理和等腰三角形的定义求解;③当DA=DB时,如图6,设CD=x,然后在直角△ACD中根据勾股定理求解即可.【详解】解:(1)作点C关于直线AB的对称点E,连接BE、DE,DE交AB于点M,连接CM,如图1,则此时的周长最小.∵,,点是边的中点,∴∠CBA=45°,BD=CD=1,∵点C、E关于直线AB对称,∴BE=BC=2,∠EBA=∠CBA=45°,∴∠DBE=90°,∴.∴的周长的最小值=CD+DE=;(2)由于点是直线上一点,所以需分三种情况讨论:①当AB=AD时,如图4,此时CD=CB=8;②当BD=BA时,如图5,在直线BC上存在两点符合题意,即D1、D2,∵,∴,;③当DA=DB时,如图6,此时点D为线段AB的垂直平分线与直线BC的交点,设CD=x,则BD=AD=8-x,在直角△ACD中,根据勾股定理,得:,解得:x=1,即CD=1.综上,在直线BC上存在点,使以,,为顶点的三角形是等腰三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育法规强化训练试卷B卷附答案
- 2024年通风消声器项目资金筹措计划书代可行性研究报告
- 成考英语成人高考(高起专)试卷及解答参考
- 2024年解除劳动关系协议模板
- 2024年洒水车租赁协议模板
- 城市中心2024停车场地租赁协议
- 2024年工程承包协议格式
- 2024年度新鲜猪肉购销协议模板
- 2024专业修路工程协作协议
- 2024小食品买卖协议书
- 智能交通系统中交通事故预防与安全预警
- 探索中小学人工智能课程的设计与实施
- 个人申报国家社科基金的过程与体会
- QtC++程序设计-教学大纲
- 《企业普法讲座》课件
- 引领学生了解物理科学的前沿与进展
- 污泥( 废水)运输服务方案(技术方案)
- 如何搞定你的客户-
- 八年级物理上册说课稿:第二章2.1物质的三态 温度的测量
- 职业院校面试题目及答案
- 湖北省鄂东南省级示范高中教育教学改革联盟2023-2024学年高一上学期期中联考政治试题
评论
0/150
提交评论