




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列各式中,从左到右的变形是因式分解的是()A.3x+3y+1=3(x+y)+1 B.a2﹣2a+1=(a﹣1)2C.(m+n)(m﹣n)=m2﹣n2 D.x(x﹣y)=x2﹣xy2.长度分别为,,的三条线段能组成一个三角形,的值可以是()A. B. C. D.3.9的算术平方根是()A.3 B.-3 C. D.以上都对4.如图,在和中,,若添加条件后使得≌,则在下列条件中,不能添加的是().A., B.,C., D.,5.一次函数的图象大致是()A. B. C. D.6.下列运算正确的是()A.(﹣a3)2=﹣a6 B.2a2+3a2=6a2C.2a2•a3=2a6 D.7.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.58.要说明命题“若ab,则a2b2”是假命题,能举的一个反例是()A.a3,b2 B.a4,b1 C.a1,b0 D.a1,b29.等边三角形的两个内角的平分线所夹的钝角的度数为()A. B. C. D.10.的平方根是()A. B. C. D.11.下列计算正确的是()A. B. C. D.·12.的算术平方根是()A.5 B.﹣5 C. D.二、填空题(每题4分,共24分)13.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是____________14.比较大小______5(填“>”或“<”).15.若是关于的完全平方式,则__________.16.若等腰三角形的一个内角比另一个内角大,则等腰三角形的顶角的度数为________.17.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是_____.18.将点P(-1,2)向左平移2个单位,再向上平移1个单位所得的对应点的坐标为_____.三、解答题(共78分)19.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点的坐标分别为.(1)请作出关于y轴对称的;(2)在y轴上找一点P,使最小;(3)在x轴上找一点Q,使最大.20.(8分)如图,直线y=-x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B'处.(1)求A、B两点的坐标;(2)求S△ABO·(3)求点O到直线AB的距离.(4)求直线AM的解析式.21.(8分)如图,边长为a,b的矩形,它的周长为14,面积为10,求下列各式的值:(1)a2b+ab2;(2)a2+b2+ab.22.(10分)寿阳某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元,购买一个足球、一个篮球各需多少元?23.(10分)如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.24.(10分)如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,过点B的直线x轴于点C,且AB=BC.(1)求直线BC的表达式(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,PQ交x轴于点P,设点Q的横坐标为m,求的面积(用含m的代数式表示)(3)在(2)的条件下,点M在y轴的负半轴上,且MP=MQ,若求点P的坐标.25.(12分)如图,在中,是的角平分线,,交于点,,,求的度数26.解方程:(1)(2).
参考答案一、选择题(每题4分,共48分)1、B【分析】根据因式分解的意义,可得答案.【详解】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、是整式的乘法,故C错误;D、是整式的乘法,故D错误;故选:B.【点睛】把多项式化为几个整式的积的形式,即是因式分解2、C【分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x<7+2,即5<x<1.因此,本题的第三边应满足5<x<1,把各项代入不等式符合的即为答案.4,5,1都不符合不等式5<x<1,只有6符合不等式,故选C.【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.3、A【分析】根据算术平方根的定义解答即可.【详解】∵,∴9的算术平方根是3,故选:A.【点睛】此题考查算术平方根的定义:如果一个正数的平方等于a,那么这个正数即是a的算术平方根,熟记定义是解题的关键.4、D【解析】解:A.添加,可用判定两个三角形全等,故本选项正确;B.添加,可用判定两个三角形全等,故本选项正确;C.由有可得,;再加上可用判定两个三角形全等,故本选项正确;D.添加,后是,无法判定两个三角形全等,故本选项错误;故选.点睛:本题考查全等三角形的判定方法,要熟练掌握、、、、五种判定方法.5、D【分析】根据一次函数的图象与系数的关系选出正确选项.【详解】解:根据函数解析式,∵,∴直线斜向下,∵,∴直线经过y轴负半轴,图象经过二、三、四象限.故选:D.【点睛】本题考查一次函数的图象,解题的关键是能够根据解析式系数的正负判断图象的形状.6、D【解析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.【详解】A、(-a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、(,此选项正确;故选D.【点睛】本题主要考查整式的运算,解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方的运算法则.7、A【解析】解:去分母得:3x﹣2=2x+2+m①.由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程①得:﹣1=﹣2+2+m,解得:m=﹣1.故选A.8、D【分析】作为反例,要满足条件但不能得到结论,然后根据这个要求对各选项进行判断即可.【详解】解:A、a=3,b=2时.满足a>b,则a2>b2,不能作为反例,错误;B、a=4,b=-1时.满足a>b,则a2>b2,不能作为反例,错误;C、a=1,b=0时.满足a>b,则a2>b2,不能作为反例,错误;D、a=1,b=-2时,a>b,但a2<b2,能作为反例,正确;故选:D.【点睛】本题考查了命题与定理;熟记:要判断一个命题是假命题,举出一个反例就可以.9、D【分析】画出图形,根据内角平分线的定义求出∠OBC和∠OCB的度数,再根据三角形的内角和定理求出∠BOC的度数.【详解】如图:∵∠ABC=∠ACB=,BO、CO是两个内角的平分线,∴∠OBC=∠OCB=30,∴在△OBC中,∠BOC=180−30−30=.故选D.【点睛】本题考查了等边三角形的性质,知道等边三角形的每个内角是60度是解题的关键.10、C【解析】∵±3的平方是9,∴9的平方根是±3故选C11、D【分析】直接利用零指数幂、合并同类项、积的乘方、同底数幂的乘除、负整数指数幂的运算法则分别化简进而得出答案.【详解】A、,错误,该选项不符合题意;B、不能合并,该选项不符合题意;C、,错误,该选项不符合题意;D、·,正确,该选项符合题意;故选:D.【点睛】本题主要考查了负整数指数幂,同底数幂的乘除,积的乘方,合并同类项,零指数幂,正确应用相关运算法则是解题关键.12、C【解析】解:∵=5,而5的算术平方根即,∴的算术平方根是故选C.二、填空题(每题4分,共24分)13、或【分析】根据等腰三角形的性质和可得,,根据特殊三角函数值即可求出,即可求出这个等腰三角形的底角度数.【详解】根据题意,作如下等腰三角形,AB、AC为腰,,①顶角是锐角∵,∴,∵∴∴∴∴②顶角是钝角∵,∴,∵∴∴∴∴故答案为:或.【点睛】本题考查了等腰三角形的度数问题,掌握等腰三角形的性质、特殊三角函数值是解题的关键.14、<【分析】根据算术平方根的意义,将写成,将5写成,然后再进行大小比较.【详解】解:∵,又∵,∴,即.故答案为:<.【点睛】本题考查实数的大小比较,掌握算术平方根的意义正确将写成,将5写成,是本题的解题关键.15、1或-1【解析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.16、80°或40°【分析】根据已知条件,先设出三角形的两个角,然后进行讨论,列方程求解即可.【详解】解:在等腰△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,则顶角∠B=80°;当∠B=∠C为底角时,2(x+30°)+x=180°,解得x=40°,即顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为80°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.17、【分析】由数轴先判断出被覆盖的无理数的范围,再确定出,,–的范围即可得出结论.【详解】解:由数轴知,被墨迹覆盖住的无理数在3到4之间,∵9<11<16,∴3<<4,∵4<5<9,∴2<<3,∵1<3<4,∴1<<2,∴–2<–<–1,∴被墨迹覆盖住的无理数是,故答案为.【点睛】此题主要实数与数轴,算术平方根的范围,确定出,,–的范围是解本题的关键.18、(-1,1)【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】原来点的横坐标是-1,纵坐标是2,向左平移2个单位,再向上平移1个单位得到新点的横坐标是-1−2=-1,纵坐标为2+1=1.即对应点的坐标是(-1,1).故答案填:(-1,1).【点睛】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题(共78分)19、(1)图见解析;(2)P点见解析;(3)Q点见解析.【分析】(1)先描出对应点,再依次连接即可;(2)C点关于y轴对称点为,所最短为,(3)根据三角形两边之差小于第三边,可得(当Q在AB的延长线上等号成立),由此可得Q点.【详解】解:(1)如图所示;(2)如图,连接与y轴交于P,此时PA+PC最小;(3)延长AB与x轴交于Q,此时最大.【点睛】本题考查坐标与图形变换——轴对称,三角形三边关系.熟知轴对称的性质是解答此题的关键.20、(1)A(6,0),B(0,8);(2)24;(1)4.8;(4)y=-x+1.【分析】(1)由解析式令x=0,y=x+8=8,即B(0,8),令y=0时,x=6,即A(6,0);(2)根据三角形面积公式即可求得;(1)根据三角形面积求得即可;(4)由折叠的性质,可求得AB′与OB′的长,BM=B′M,然后设MO=x,由在Rt△OMB′中,OM2+OB′2=B′M2,求出M的坐标,设直线AM的解析式为y=kx+b,再把A、M坐标代入就能求出解析式.【详解】解:(1)当x=0时,y=x+8=8,即B(0,8),当y=0时,x=6,即A(6,0);(2)∵点A的坐标为:(6,0),点B坐标为:(0,8),∠AOB=90°,∴OA=6,OB=8,∴,∴S△ABO=OA•OB=×6×8=24;(1)设点O到直线AB的距离为h,∵S△ABO=OA•OB=AB•h,∴×6×8=×10h,解得h=4.8,∴点O到直线AB的距离为4.8;(4)由折叠的性质,得:AB=AB′=10,∴OB′=AB′-OA=10-6=4,设MO=x,则MB=MB′=8-x,在Rt△OMB′中,OM2+OB′2=B′M2,即x2+42=(8-x)2,解得:x=1,∴M(0,1),设直线AM的解析式为y=kx+b,把(0,1);(6,0)代入可得,,解得,,所以,直线AM的解析式为y=-x+1.【点睛】此题考查了折叠的性质、待定系数法求一次函数的解析式、一次函数图象上点的坐标特征、勾股定理等知识,解答本题的关键是求出OM的长度.21、(1)2;(2)1.【解析】(1)应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.
(2)先根据a+b=7,ab=10求出a2+b2的值,即可求出a2+b2+ab的值.【详解】(1)∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=2.(2)a2+b2=(a+b)2﹣2ab=72﹣2×10=29,∴a2+b2+ab=29+10=1.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.22、购买一个足球50元,一个篮球80元【分析】设购买一个足球需要x元,购买一个篮球需要y元,然后根据题意,列出二元一次方程组即可求出结论.【详解】解:设购买一个足球需要x元,购买一个篮球需要y元,根据题意得解得,∴购买一个足球需要50元,购买一个篮球需要80元.【点睛】此题考查的是二元一次方程组的应用,掌握实际问题中的等量关系是解决此题的关键.23、(1)40°;(2)△ABC是等腰三角形.证明见解析.【解析】试题分析:(1)由由三角形外角的性质,可求得∠BAD的度数,根据等角对等边,可得AD=BD;(2)由∠BAC=70°,易求得∠C=∠BAC=70°,根据等角对等边的性质,可证得△ABC是等腰三角形.(1)∵∠ADC=∠B+∠BAD,而∠ADC=80°,∠B=40°,∴∠BAD=80°-40°=40°,∴∠B=∠BAD,∴AD=BD.(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.24、(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC的解析式;
(2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解;
(3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标.【详解】解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,
∴点B(0,8),点A(-4,0)
∴AO=4,BO=8,
∵AB=BC,BO⊥AC,
∴AO=CO=4,
∴点C(4,0),
设直线BC解析式为:y=kx+b,
由题意可得:,解得:,∴直线BC解析式为:y=-2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,设△PBQ的面积为S,
∵AB=CB,
∴∠BAC=∠BCA,
∵点Q横坐标为m,
∴点Q(m,-2m+8)
∴HQ=2m-8,CH=m-4,
∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,
∴△AGP≌△CHQ(AAS),
∴AG=HC=m-4,PG=HQ=2m-8,
∵PE∥BC,
∴∠PEA=∠ACB,∠EPF=∠CQF,
∴∠PEA=∠PAE,
∴AP=PE,且AP=CQ,
∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,
∴△PEF≌△QCF(AAS)
∴S△PEF=S△QCF,
∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB的面积,
∴S=S△ABC-S△PAE=×8×8-×(2m-8)×(2m-8)=16m-2m2;(3)如图2,连接AM,CM,过点P作PE⊥AC,
∵AB=BC,BO⊥AC,
∴BO是AC的垂直平分线,
∴AM=CM,且AP=CQ,PM=MQ,
∴△APM≌△CQM(SSS)
∴∠PAM=∠MCQ,∠BQM=∠APM=45°,
∵AM=CM,AB=BC,BM=BM,
∴△ABM≌△CBM(SSS)
∴∠BAM=∠BCM,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广东科贸职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年广东江门中医药职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年山东服装职业学院高职单招语文2019-2024历年真题考点试卷含答案解析
- 2025年山东中医药高等专科学校高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年安徽体育运动职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2024年5月水坝闸门液压系统同步拆除精度控制合同
- 自我介绍开场-展现你的精彩亮点
- CO的有关知识课件
- 新发展英语(第二版)综合教程2 课件 Unit 9 Remembrances
- 石家庄经济职业学院《儿童歌曲演唱与指挥》2023-2024学年第一学期期末试卷
- 装修项目技术标(范本)
- 货车挂靠协议完整
- 教学能力大赛三相异步电动机的基本控制+教案
- 二手车营销策划方案
- 钢格构柱组合式塔吊方案(专家认证)
- 工程结算单(样本)
- 中小学科学学科分项等级评价操作手册
- 风机基础降水专项施工
- 校园小品剧本多人10人 校园多人小品剧本
- 完整欠条范本
- 巴厘岛码头工程量清单
评论
0/150
提交评论