重庆市巴川中学2022年数学九上期末联考模拟试题含解析_第1页
重庆市巴川中学2022年数学九上期末联考模拟试题含解析_第2页
重庆市巴川中学2022年数学九上期末联考模拟试题含解析_第3页
重庆市巴川中学2022年数学九上期末联考模拟试题含解析_第4页
重庆市巴川中学2022年数学九上期末联考模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,AB是⊙O的直径,∠AOC=130°,则∠D等于()A.25° B.35° C.50° D.65°2.下列说法正确的是()A.所有菱形都相似 B.所有矩形都相似C.所有正方形都相似 D.所有平行四边形都相似3.一元二次方程x2﹣3x=0的两个根是()A.x1=0,x2=﹣3 B.x1=0,x2=3 C.x1=1,x2=3 D.x1=1,x2=﹣34.下列四个三角形,与左图中的三角形相似的是().A. B. C. D.5.三角形的两边分别2和6,第三边是方程x2-10x+21=0的解,则三角形周长为()A.11 B.15 C.11或15 D.不能确定6.如图,双曲线与直线相交于、两点,点坐标为,则点坐标为()A. B. C. D.7.如图,在Rt△ABC中BC=2,以BC的中点O为圆心的⊙O分别与AB,AC相切于D,E两点,的长为()A. B. C.π D.2π8.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是()A. B. C. D.9.据路透社报道,中国华为技术有限公司推出新的服务器芯片组,此举正值中国努力提高芯片制造能力,并减少对进口芯片的严重依赖.华为技术部门还表示,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积.其中0.00000065用科学记数法表示为()A. B. C. D.10.如图,将绕点按逆时针方向旋转后得到,若,则的度数是()A. B. C. D.11.在平面直角坐标系中,△ABC与△A1B1C1位似,位似中心是原点O,若△ABC与△A1B1C1的相似比为1:2,且点A的坐标是(1,3),则它的对应点A1的坐标是()A.(-3,-1) B.(-2,-6) C.(2,6)或(-2,-6) D.(-1,-3)12.如图,截的三条边所得的弦长相等,若,则的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.在等腰中,,点是所在平面内一点,且,则的取值范围是______.14.把一副普通扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的牌上的数字是3的倍数的概率为______.15.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为_____.16.一个几何体的三视图如图所示,根据图中数据,计算出该几何体的表面积是__________.17.有一座抛物线形拱桥,正常水位时桥下水面宽为,拱顶距水面,在如图的直角坐标系中,该抛物线的解析式为___________.18.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为________

m2.三、解答题(共78分)19.(8分)在平面直角坐标系中,抛物线与轴的两个交点分别是、,为顶点.(1)求、的值和顶点的坐标;(2)在轴上是否存在点,使得是以为斜边的直角三角形?若存在,求出点的坐标;若不存在,请说明理由.20.(8分)如图,已知点在的直径延长线上,点为上,过作,与的延长线相交于,为的切线,,.(1)求证:;(2)求的长;(3)若的平分线与交于点,为的内心,求的长.21.(8分)如图,AB是的直径,AC为弦,的平分线交于点D,过点D的切线交AC的延长线于点E.求证:;.22.(10分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?23.(10分)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE=105°.(1)求∠CAD的度数;(2)若⊙O的半径为4,求弧BC的长.24.(10分)如图,在中,,的中点.(1)求证:三点在以为圆心的圆上;(2)若,求证:四点在以为圆心的圆上.25.(12分)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“衍生直线”的解析式为,点A的坐标为,点B的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“衍生三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.26.阅读以下材料,并按要求完成相应的任务.已知平面上两点,则所有符合且的点会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.(问题)如图1,在平面直角坐标中,在轴,轴上分别有点,点是平面内一动点,且,设,求的最小值.阿氏圆的关键解题步骤:第一步:如图1,在上取点,使得;第二步:证明;第三步:连接,此时即为所求的最小值.下面是该题的解答过程(部分):解:在上取点,使得,又.任务:将以上解答过程补充完整.如图2,在中,为内一动点,满足,利用中的结论,请直接写出的最小值.

参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:∵AB是⊙O的直径,∴∠BOC=180°-∠AOC=180°-130°=50°,∴∠D=∠BOC=×50°=25°.故选A.考点:圆周角定理2、C【分析】根据相似多边形的定义一一判断即可.【详解】A.菱形的对应边成比例,对应角不一定相等,故选项A错误;B.矩形的对应边不一定成比例,对应角一定相等,故选项B错误;C.正方形对应边一定成比例,对应角一定相等,故选项C正确;D.平行四边形对应边不一定成比例,对应角不一定相等,故选项D错误.故选:C.【点睛】本题考查了相似多边形的判定,解答本题的关键是灵活运用所学知识解决问题,属于中考常考题型.3、B【分析】利用因式分解法解一元二次方程即可.【详解】x2﹣1x=0,x(x﹣1)=0,x=0或x﹣1=0,x1=0,x2=1.故选:B.【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).4、B【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【详解】解:设单位正方形的边长为1,给出的三角形三边长分别为,,.

A、三角形三边分别是2,,3,与给出的三角形的各边不成比例,故A选项错误;

B、三角形三边2,4,,与给出的三角形的各边成比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,,4,与给出的三角形的各边不成正比例,故D选项错误.

故选:B.【点睛】此题考查了相似三角形的判定,注意三边对应成比例的两三角形相似.5、B【详解】解:方程x2-10x+21=0,变形得:(x-3)(x-7)=0,解得:x1=3,x2=7,若x=3,三角形三边为2,3,6,不合题意,舍去,则三角形的周长为2+6+7=1.故选:B.6、B【解析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【详解】解:点A与B关于原点对称,点坐标为A点的坐标为(2,3).所以B选项是正确的.【点睛】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.7、B【分析】连接OE、OD,由切线的性质可知OE⊥AC,OD⊥AB,由于O是BC的中点,从而可知OD是中位线,所以可知∠B=45°,从而可知半径r的值,最后利用弧长公式即可求出答案.【详解】连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE=AC,∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45°,∵BC=2∴由勾股定理可知AB=2,∴r=1,∴==故选B【点睛】此题考查切线的性质,弧长的计算,解题关键在于作辅助线8、D【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是.【详解】解:.故选:D.【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.9、B【分析】把一个数表示成的形式,其中,n是整数,这种记数方法叫做科学记数法,根据科学记数法的要求即可解答.【详解】0.00000065=,故选:B.【点睛】此题考察科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,整数等于原数左起第一个非零数字前0的个数,按此方法即可正确求解.10、A【分析】根据绕点按逆时针方向旋转后得到,可得,然后根据可以求出的度数.【详解】∵绕点按逆时针方向旋转后得到∴又∵∴【点睛】本题考查的是对于旋转角的理解,能利用定义从图形中准确的找出旋转角是关键.11、C【解析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或,即可求出答案.【详解】由位似变换中对应点坐标的变化规律得:点的对应点的坐标是或,即点的坐标是或故选:C.【点睛】本题考查了位似变换中对应点坐标的变化规律,理解位似的概念,并熟记变化规律是解题关键.12、C【分析】先利用截的三条边所得的弦长相等,得出即是的内心,从而∠1=∠2,∠3=∠4,进一步求出的度数.【详解】解:过点分别作、、,垂足分别为、、,连接、、、、、、、,如图:∵,∴∴∴点是三条角平分线的交点,即三角形的内心∴,∵∴∴.故选:C【点睛】本题考查的是三角形的内心、角平分线的性质、全等三角形的判定和性质以及三角形内角和定理,比较简单.二、填空题(每题4分,共24分)13、【分析】根据题意可知点P在以AB为直径,AB的中点O为圆心的上,然后画出图形,找到P点离C点距离最近的点和最远的点,然后通过勾股定理求出OC的长度,则答案可求.【详解】∴点P在以AB为直径,AB的中点O为圆心的上如图,连接CO交于点,并延长CO交于点当点P位于点时,PC的长度最小,此时当点P位于点时,PC的长度最大,此时故答案为:.【点睛】本题主要考查线段的取值范围,能够找到P点的运动轨迹是圆是解题的关键.14、【分析】根据概率的定义求解即可【详解】一副普通扑克牌中的13张红桃牌,牌上的数字是3的倍数有4张∴概率为故本题答案为:【点睛】本题考查了随机事件的概率15、-1或2或1【分析】分该函数是一次函数和二次函数两种情况求解,若为二次函数,由抛物线与x轴只有一个交点时b2-4ac=0,据此求解可得.【详解】∵函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2-4ac=16-4(a-1)×2a=0,解得:a1=-1,a2=2,当函数为一次函数时,a-1=0,解得:a=1.故答案为-1或2或1.16、【分析】根据三视图可得出该几何体为圆锥,圆锥的表面积=底面积+侧面积(侧面积将圆锥的侧面积不成曲线地展开,是一个扇形.),用字母表示就是S=πr²+πrl(其中l=母线,是圆锥的顶点到圆锥的底面圆周之间的距离).【详解】解:由题意可知,该几何体是圆锥,其中底面半径为2,母线长为6,∴故答案为:.【点睛】本题考查的知识点是几何体的三视图以及圆锥的表面积公式,熟记圆锥的面积公式是解此题的关键.17、y=-0.04(x-10)2+4【分析】根据题意设所求抛物线的解析式为y=a(x-h)2+k,由已知条件易知h和k的值,再把点C的坐标代入求出a的值即可;【详解】解:设所求抛物线的解析式为:y=a(x-h)2+k,并假设拱桥顶为C,如图所示:∵由AB=20,AB到拱桥顶C的距离为4m,则C(10,4),A(0,0),B(20,0)把A,B,C的坐标分别代入得a=-0.04,h=10,k=4抛物线的解析式为y=-0.04(x-10)2+4.故答案为y=-0.04(x-10)2+4.【点睛】本题考查二次函数的应用,熟练掌握并利用待定系数法求抛物线的解析式是解决问题的关键.18、75【解析】试题分析:首先设垂直于墙面的长度为x,则根据题意可得:平行于墙面的长度为(30-3x),则S=x(30-3x)=-3+75,,则当x=5时,y有最大值,最大值为75,即饲养室的最大面积为75平方米.考点:一元二次方程的应用.三、解答题(共78分)19、(1),,(-1,4);(2)在y轴上存在点D(0,3)或D(0,1),使△ACD是以AC为斜边的直角三角形【分析】(1)把A(-3,0),B(1,0)代入解方程组即可得到结论;

(2)过C作CE⊥y轴于E,根据函数的解析式求得C(-1,4),得到CE=1,OE=4,设,得到,根据相似三角形的性质即可得到结论.【详解】(1)把A(−3,0)、B(1,0)分别代入,,解得:,,则该抛物线的解析式为:,∵,所以顶点的坐标为(,);故答案为:,,顶点的坐标为(,);(2)如图1,过点作⊥轴于点,假设在轴上存在满足条件的点,设(0,),则,∵,∴,,,,由∠90得∠1∠290,又∵∠2∠390,∴∠3∠1,又∵∠CED∠DOA90,∴△∽△,∴,则,变形得,解得,.综合上述:在y轴上存在点(0,3)或(0,1),使△ACD是以AC为斜边的直角三角形.【点睛】本题考查了二次函数综合题,待定系数法求函数的解析式,相似三角形的判定和性质,正确的理解题意是解题的关键.20、(1)见解析;(2);(3)【分析】(1)利用同角的余角相等得出∠E=∠ECD,从而得出结论;(2)利用直角△OCD和直角△ADE中的勾股定理列出方程解得BD的长;(3)连接,,,根据平分求出,利用同弧所对的圆周角相等得出,从而得出,即FP=FB.【详解】解:(1)证明:连接,∵是的切线,∴,∴,∵,∴,∵,∴,∴,∴.(2)∵,∴,∵,∴由勾股定理可得,,∵,∴由勾股定理可得,,∵,∴,∴或(舍去).(3)连接,,,∵平分,∴,∴,∵为直径,,∴,∵为的内心,∴,,∵,∴,∴,∴,∴.【点睛】本题属于圆的综合题,考查了圆周角的性质,勾股定理,等腰三角形的判定,内心的概念,需要综合多个条件进行推导.21、(1)证明见解析;(2)证明见解析.【分析】(1)连接OD,根据等腰三角形的性质结合角平分线的性质可得出∠CAD=∠ODA,利用“内错角相等,两直线平行”可得出AE//OD,结合切线的性质即可证出DE⊥AE;(2)过点D作DM⊥AB于点M,连接CD、DB,根据角平分线的性质可得出DE=DM,结合AD=AD、∠AED=∠AMD=90°即可证出△DAE≌△DAM(SAS),根据全等三角形的性质可得出AE=AM,由∠EAD=∠MAD可得出,进而可得出CD=BD,结合DE=DM可证出Rt△DEC≌Rt△DMB(HL),根据全等三角形的性质可得出CE=BM,结合AB=AM+BM即可证出AE+CE=AB.【详解】连接OD,如图1所示,,AD平分,,,,,是的切线,,,;过点D作于点M,连接CD、DB,如图2所示,平分,,,,在和中,,≌,,,,,在和中,,≌,,.【点睛】本题考查了全等三角形的判定与性质、切线的性质、角平分线的性质、等腰三角形的性质、平行线的判定与性质以及圆周角定理,解题的关键是:(1)利用平行线的判定定理找出AE//OD;(2)利用全等三角形的性质找出AE=AM、CE=BM.22、(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售价定为130元时,每天获得的利润最大,最大利润是2元.【解析】(1)先利用待定系数法求一次函数解析式;(2)用每件的利润乘以销售量得到每天的利润W,即W=(x﹣90)(﹣x+170),然后根据二次函数的性质解决问题.【详解】(1)设y与x之间的函数关系式为y=kx+b,根据题意得:,解得:,∴y与x之间的函数关系式为y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴当x=130时,W有最大值2.答:售价定为130元时,每天获得的利润最大,最大利润是2元.【点睛】本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=每件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x的取值范围.23、(1)∠CAD=35°;(2).【分析】(1)由AB=AC,得到=,求得∠ABC=∠ACB,推出∠CAD=∠ACD,得到∠ACB=2∠ACD,于是得到结论;(2)根据平角的定义得到∠BAC=40°,连接OB,OC,根据圆周角定理得到∠BOC=80°,根据弧长公式即可得到结论.【详解】(1)∵AB=AC,∴=,∴∠ABC=∠ACB,∵D为的中点,∴=,∴∠CAD=∠ACD,∴=2,∴∠ACB=2∠ACD,又∵∠DAE=105°,∴∠BCD=105°,∴∠ACD=×105°=35°,∴∠CAD=35°;(2)∵∠DAE=105°,∠CAD=35°,∴∠BAC=180°-∠DAE-∠CAD=40°,连接OB,OC,∴∠BOC=80°,∴弧BC的长==.【点睛】本题考查了三角形的外接圆和外心,圆心角、弧、弦的关系和圆周角定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.24、(1)见解析;(2)见解析【分析】(1)连结OC,利用直角三角形斜边中线等于斜边一半可得OA=OB=OC,所以A,B,C三点在以O为圆心,OA长为半径的圆上;(2)连结OD,可得OA=OB=OC=OD,所以A,B,C,D四点在以O为圆心,OA长为半径的圆上.【详解】(1)连结OC,在中,,的中点,∴OC=OA=OB,∴三点在以为圆心的圆上;(2)连结OD,∵,∴OA=OB=OC=OD,∴四点在以为圆心的圆上.【点睛】此题考查了圆的定义:到定点的距离等于定长的点都在同一个圆上,所以证明几个点共圆,只需要证明这几个点到某个定点的距离相等即可.25、(1);(-2,);(1,0);(2)N点的坐标为(0,),(0,);(3)E(-1,-)、F(0,)或E(-1,),F(-4,)【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a即可;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求出ON的长,可求出N点的坐标;(3)分别讨论当AC为平行四边形的边时,当AC为平行四边形的对角线时,求出满足条件的E、F坐标即可【详解】(1)∵,a=,则抛物线的“衍生直线”的解析式为;联立两解析式求交点,解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论