浙江省宁波市名校2022-2023学年九年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
浙江省宁波市名校2022-2023学年九年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
浙江省宁波市名校2022-2023学年九年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
浙江省宁波市名校2022-2023学年九年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
浙江省宁波市名校2022-2023学年九年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列方程中,关于x的一元二次方程的是()A.x+=2 B.ax2+bx+c=0C.(x﹣2)(x﹣3)=0 D.2x2+y=12.用相同的小立方块搭成的几何体的三种视图都相同(如图所示),则搭成该几何体的小立方块个数是()A.3个 B.4个 C.5个 D.6个3.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.7000(1+x2)=23170 B.7000+7000(1+x)+7000(1+x)2=23170C.7000(1+x)2=23170 D.7000+7000(1+x)+7000(1+x)2=23174.若点M在抛物线的对称轴上,则点M的坐标可能是()A.(3,-4) B.(-3,0) C.(3,0) D.(0,-4)5.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个 B.15个 C.20个 D.35个6.下列说法正确的是().A.“购买1张彩票就中奖”是不可能事件B.“概率为0.0001的事件”是不可能事件C.“任意画一个三角形,它的内角和等于180°”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次7.在中,,,,则的值为()A. B. C. D.8.下列手机手势解锁图案中,是中心对称图形的是(

)A. B. C. D.9.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是A. B. C. D.10.若关于的一元二次方程有实数根,则实数m的取值范围是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC,若sinC=,BC=12,则AD的长_____.12.在中,,则的面积为_________13.已知x=1是一元二次方程x²+ax+b=0的一个根,则代数式a²+b²+2ab的值是____________.14.如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,则sinA=_____.15.我军侦察员在距敌方120m的地方发现敌方的一座建筑物,但不知其高度又不能靠近建筑物物测量,机灵的侦察员将自己的食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住,如图所示.若此时眼睛到食指的距离约为40cm,食指的长约为8cm,则敌方建筑物的高度约是_______m.16.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是_____17.二次函数解析式为,当x>1时,y随x增大而增大,求m的取值范围__________18.抛物线的对称轴是________.三、解答题(共66分)19.(10分)综合与探究:已知二次函数y=﹣x2+x+2的图象与x轴交于A,B两点(点B在点A的左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)求证:△ABC为直角三角形;(3)如图,动点E,F同时从点A出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点F停止运动时,点E随之停止运动.设运动时间为t秒,连结EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.当点F在AC上时,是否存在某一时刻t,使得△DCO≌△BCO?(点D不与点B重合)若存在,求出t的值;若不存在,请说明理由.20.(6分)已知:AB为⊙O的直径.(1)作OB的垂直平分线CD,交⊙O于C、D两点;(2)在(1)的条件下,连接AC、AD,则△ACD为三角形.21.(6分)解方程(1)2x2﹣6x﹣1=0(2)(x+5)2=6(x+5)22.(8分)已知二次函数的顶点坐标为,且经过点,设二次函数图象与轴交于点,求点的坐标.23.(8分)篮球课上,朱老师向学生详细地讲解传球的要领时,叫甲、乙、丙、丁四位同学配合朱老师进行传球训练,朱老师把球传给甲同学后,让四位同学相互传球,其他人观看体会,当甲同学第一个传球时,求甲同学传给下一个同学后,这个同学再传给甲同学的概率24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若∠DAB=60°,⊙O的半径为3,求线段CD的长.25.(10分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=BC,点P为BC边上一点(不与B、C重合),连接PA,以P为旋转中心,将线段PA顺时针旋转90°,得到线段PD,连接DB.(1)请在图中补全图形;(2)∠DBA的度数.26.(10分)如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70°,求∠CBD的度数;(2)求证:DE=DB.

参考答案一、选择题(每小题3分,共30分)1、C【分析】利用一元二次方程的定义判断即可.含有一个未知数,并且未知数的最高次数是2次的整式方程是一元二次方程.【详解】解:A、x+=2不是整式方程,不符合题意;B、ax2+bx+c=0不一定是一元二次方程,不符合题意;C、方程整理得:x2﹣5x+6=0是一元二次方程,符合题意;D、2x2+y=1不是一元二次方程,不符合题意.故选:C.2、B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】依题意可得所以需要4块;故选:B【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.3、C【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每年投入教育经费的年平均增长百分率为x,再根据“2018年投入7000万元”可得出方程.【详解】设每年投入教育经费的年平均增长百分率为x,则2020年的投入为7000(1+x)2=23170由题意,得7000(1+x)2=23170.故选:C.【点睛】此题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.4、B【解析】试题解析:∴对称轴为x=-3,∵点M在对称轴上,∴M点的横坐标为-3,故选B.5、A【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选A.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.6、C【解析】试题解析:A.“购买1张彩票就中奖”是不可能事件,错误;B.“概率为0.0001的事件”是不可能事件,错误;C.“任意画一个三角形,它的内角和等于180°”是必然事件,正确;D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.故选C.7、A【分析】根据勾股定理求出AB,根据余弦的定义计算即可.【详解】由勾股定理得,,则,

故选:A.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.8、B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、B【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.10、B【分析】因为一元二次方程有实数根,所以,即可解得.【详解】∵一元二次方程有实数根∴解得故选B【点睛】本题考查一元二次方程根的判别式,掌握方程根的个数与根的判别式之间关系是解题关键.二、填空题(每小题3分,共24分)11、1【分析】在Rt△ADC中,利用正弦的定义得sinC==,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sinC得到tanB=,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sinC==,设AD=12x,则AC=13x,∴DC==5x,∵cos∠DAC=sinC=,∴tanB=,在Rt△ABD中,∵tanB==,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=,∴AD=12x=1.故答案为1.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.12、【分析】过点点B作BD⊥AC于D,根据邻补角的定义求出∠BAD=60°,再根据∠BAD的正弦求出AD,然后根据三角形的面积公式列式计算即可得解.【详解】如图,过点B作BD⊥AC交AC延长线于点D,

∵∠BAC=120°,

∴∠BAD=180°-120°=60°,∵,∴,∴△ABC的面积.

故答案为:.【点睛】本题主要考查了运用勾股定理和锐角三角函数的概念解直角三角形问题,作出图形更形象直观.13、1【分析】把x=1代入x2+ax+b=0得到1+a+b=0,易求a+b=-1,将其整体代入所求的代数式进行求值即可.【详解】∵x=1是一元二次方程x2+ax+b=0的一个根,∴12+a+b=0,∴a+b=﹣1.∴a2+b2+2ab=(a+b)2=(﹣1)2=1.14、【分析】根据锐角的正弦为对边比斜边,可得答案.【详解】解:在Rt△ABC中,∠C=90°,AB=10,BC=6,则sinA=,故答案为:.【点睛】本题考查了求解三角函数,属于简单题,熟悉正弦三角函数的定义是解题关键.15、1【分析】如图(见解析),过点A作,交BC于点F,利用平行线分线段成比例定理推论求解即可.【详解】如图,过点A作,交BC于点F由题意得则(平行线分线段成比例定理推论)即解得故答案为:1.【点睛】本题考查了平行线分线段成比例定理推论,读懂题意,将所求问题转化为利用平行线分线段成比例定理推论的问题是解题关键.16、【解析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【详解】解:∵四边形ABCD是矩形,

∴AD=BC,AD∥BC,

∵点E是边BC的中点,

∴BE=BC=AD,

∴△BEF∽△DAF,∴∴EF=AF,

∴EF=AE,

∵点E是边BC的中点,

∴由矩形的对称性得:AE=DE,

∴EF=DE,设EF=x,则DE=3x,

∴DF==2x,∴tan∠BDE===;故答案为:.【点睛】本题考查相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.17、m≤1【分析】先确定图像的对称轴x=,当x>1时,y随x增大而增大,则≤1,然后列不等式并解答即可.【详解】解:∵∴对称轴为x=∵当x>1时,y随x增大而增大∴≤1即m≤1故答案为m≤1.【点睛】本题考查二次函数的增减性,正确掌握二次函数得性质和解一元一次不等式方程是解答本题的关键.18、【分析】根据二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=−计算.【详解】抛物线y=2x2+24x−7的对称轴是:x=−=−1,故答案为:x=−1.【点睛】本题考查的是二次函数的性质,掌握二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=−是解题的关键.三、解答题(共66分)19、(1)点A的坐标为(4,0),点B的坐标为(﹣1,0),点C的坐标为(0,1);(1)证明见解析;(3)t=.【分析】(1)利用x=0和y=0解方程即可求出A、B、C三点坐标;

(1)先计算△ABC的三边长,根据勾股定理的逆定理可得结论;

(3)先证明△AEF∽△ACB,得∠AEF=∠ACB=90°,确定△AEF沿EF翻折后,点A落在x轴上点D处,根据△DCO≌△BCO时,BO=OD,列方程4-4t=1,可得结论.【详解】(1)解:当y=0时,﹣x+1=0,解得:x1=1,x1=4,∴点A的坐标为(4,0),点B的坐标为(﹣1,0),当x=0时,y=1,∴点C的坐标为(0,1);(1)证明:∵A(4,0),B(﹣1,0),C(0,1),∴OA=4,OB=1,OC=1.∴AB=5,AC==,∴AC1+BC1=15=AB1,∴△ABC为直角三角形;(3)解:由(1)可知△ABC为直角三角形.且∠ACB=90°,∵AE=1t,AF=t,∴,又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,点A落在x轴上点D处,由翻折知,DE=AE,∴AD=1AE=4t,当△DCO≌△BCO时,BO=OD,∵OD=4﹣4t,BO=1,∴4﹣4t=1,t=,即:当t=秒时,△DCO≌△BCO.【点睛】本题考查二次函数的性质、抛物线与x轴的交点、翻折的性质、三角形相似和全等的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、(1)见解析;(2)等边.【分析】(1)利用基本作图,作CD垂直平分OB;

(2)根据垂直平分线的性质得到OC=CB,DO=DB,则可证明△OCB、△OBD都是等边三角形,所以∠ABC=∠ABD=60°,利用圆周角定理得到∠ADC=∠ACD=60°,则可判断△ACD为等边三角形.【详解】解:(1)如图,CD为所作;(2)如图,连接OC、OD、BC、BD,∵CD垂直平分OB,∴OC=CB,DO=DB,∴OC=BC=OB=BD,∴△OCB、△OBD都是等边三角形,∴∠ABC=∠ABD=60°,∴∠ADC=∠ACD=60°,∴△ACD为等边三角形.故答案是:等边.【点睛】本题考查了基本作图及圆周角定理:证明△OCB、△OBD是等边三角形是解本题的关键.21、(1);(2)x=﹣5或x=1.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【详解】(1)∵a=2,b=﹣6,c=﹣1,∴△=(﹣6)2﹣4×2×(﹣1)=44>0,则x;(2)∵(x+5)2﹣6(x+5)=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得:x=﹣5或x=1.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解答本题的关键.22、点的坐标为:【分析】以顶点式设函数解析式,将点代入,求出二次函数解析式,再令,求得对应的值,则可得点的坐标.【详解】解:∵二次函数的顶点坐标为∴设其解析式为:.∵函数经过点,∴,∴,∴.令得:∴点的坐标为:.【点睛】此题考查的是求二次函数的解析式和根据解析式求点的坐标,掌握二次函数的顶点式是解决此题的关键.23、.【分析】画出树状图,然后找到甲同学传给下一个同学后,这个同学再传给甲同学的结果数多即可得.【详解】由题意可画如下的树状图:由树状图可知,共有9种等可能性的结果,其中甲同学传给下一个同学后,这个同学再传给甲同学的结果有3种甲同学传给下一个同学后,这个同学再传给甲同学的概率.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24、(1)证明见解析;(2).【分析】(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,∠BAC=30°,在Rt△ABC中可求得AC,同理在Rt△ACD中求得CD.【详解】(1)证明:连接CO,∵AO=CO,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴CO∥AD,∴CO⊥CD,∴DC为⊙O的切线;(2)解:连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠DAB=60°,AC平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论