云南省昭通市盐津县2022-2023学年数学九年级第一学期期末联考试题含解析_第1页
云南省昭通市盐津县2022-2023学年数学九年级第一学期期末联考试题含解析_第2页
云南省昭通市盐津县2022-2023学年数学九年级第一学期期末联考试题含解析_第3页
云南省昭通市盐津县2022-2023学年数学九年级第一学期期末联考试题含解析_第4页
云南省昭通市盐津县2022-2023学年数学九年级第一学期期末联考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若抛物线y=x2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m﹣8,n),则n的值为()A.8 B.12 C.15 D.162.如图,⊙O是△ABC的外接圆,∠C=60°,则∠AOB的度数是()A.30° B.60° C.120° D.150°3.定义A*B,B*C,C*D,D*B分别对应图形①、②、③、④:那么下列图形中,可以表示A*D,A*C的分别是()A.(1),(2) B.(2),(4) C.(2),(3) D.(1),(4)4.若正方形的外接圆半径为2,则其内切圆半径为()A.2 B. C. D.15.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:;;;,其中正确的是()A. B. C. D.6.已知,则的值是()A. B. C. D.7.如图,一次函数y=ax+a和二次函数y=ax2的大致图象在同一直角坐标系中可能的是()A. B.C. D.8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()A. B.C. D.9.圆锥的底面直径为30cm,母线长为50cm,那么这个圆锥的侧面展开图的圆心角为()A.108° B.120° C.135° D.216°10.如图,是的中位线,则的值为()A. B. C. D.11.如图,在平面直角坐标系中,正方形ABCD顶点B(﹣1,﹣1),C在x轴正半轴上,A在第二象限双曲线y=﹣上,过D作DE∥x轴交双曲线于E,连接CE,则△CDE的面积为()A.3 B. C.4 D.12.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是()A.0 B. C. D.1二、填空题(每题4分,共24分)13.如图,中,边上的高长为.作的中位线,交于点;作的中位线,交于点;……顺次这样做下去,得到点,则________.

14.如图,在四边形ABCD中,∠BAD=∠BCD=90°,AB+AD=8cm.当BD取得最小值时,AC的最大值为_____cm.15.如图,Rt△ABC中,∠ACB=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为_____.16.自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为,中轴轴心到地面的距离为,后轮中心与中轴轴心连线与车架中立管所成夹角,后轮切地面于点.为了使得车座到地面的距离为,应当将车架中立管的长设置为_____________.(参考数据:17.如图,PA,PB是⊙O的切线,切点分别是点A和B,AC是⊙O的直径.若∠P=60°,PA=6,则BC的长为__________.18.如图1是一种广场三联漫步机,其侧面示意图,如图2所示,其中,.①点到地面的高度是__________.②点到地面的高度是____________.三、解答题(共78分)19.(8分)已知二次函数.(1)将二次函数化成的形式;(2)在平面直角坐标系中画出的图象;(3)结合函数图象,直接写出时x的取值范围.20.(8分)如图,△ABC是⊙O的内接三角形,BC=4,∠A=30°,求⊙O的直径.21.(8分)在平面直角坐标系中,函数图象上点的横坐标与其纵坐标的和称为点的“坐标和”,而图象上所有点的“坐标和”中的最小值称为图象的“智慧数”.如图:抛物线上有一点,则点的“坐标和”为6,当时,该抛物线的“智慧数”为1.(1)点在函数的图象上,点的“坐标和”是;(2)求直线的“智慧数”;(3)若抛物线的顶点横、纵坐标的和是2,求该抛物线的“智慧数”;(4)设抛物线顶点的横坐标为,且该抛物线的顶点在一次函数的图象上;当时,抛物线的“智慧数”是2,求该抛物线的解析式.22.(10分)如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连结AC.求证:△ABC∽△POA.23.(10分)如图,已知二次函数的图象与轴交于、两点(点在点的左侧),与轴交于点,且,顶点为.(1)求二次函数的解析式;(2)点为线段上的一个动点,过点作轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;(3)探索:线段上是否存在点,使为等腰三角形?如果存在,求出点的坐标;如果不存在,请说呀理由.24.(10分)如图,抛物线l:y=﹣x2+bx+c(b,c为常数),其顶点E在正方形ABCD内或边上,已知点A(1,2),B(1,1),C(2,1).(1)直接写出点D的坐标_____________;(2)若l经过点B,C,求l的解析式;(3)设l与x轴交于点M,N,当l的顶点E与点D重合时,求线段MN的值;当顶点E在正方形ABCD内或边上时,直接写出线段MN的取值范围;(4)若l经过正方形ABCD的两个顶点,直接写出所有符合条件的c的值.25.(12分)齐齐哈尔新玛特商场购进大嘴猴品牌服装每件成本为100元,在试销过程中发现:销售单价元,与每天销售量(件)之间满足如图所示的关系.(1)求出与之间的函数关系式(不用写出自变量的取值范围);(2)写出每天的利润(元)与销售单价之间的函数解析式;并确定将售价定为多少元时,能使每天的利润最大,最大利润是多少?26.已知y与x成反比例,则其函数图象与直线相交于一点A.(1)求反比例函数的表达式;(2)直接写出反比例函数图象与直线y=kx的另一个交点坐标;(3)写出反比例函数值不小于正比例函数值时的x的取值范围.

参考答案一、选择题(每题4分,共48分)1、D【分析】由题意b2﹣4c=0,得b2=4c,又抛物线过点A(m,n),B(m﹣8,n),可知A、B关于直线x=对称,所以A(+4,n),B(﹣4,n),把点A坐标代入y=x2+bx+c,化简整理即可解决问题.【详解】解:由题意b2﹣4c=0,∴b2=4c,又∵抛物线过点A(m,n),B(m﹣8,n),∴A、B关于直线x=对称,∴A(+4,n),B(﹣4,n),把点A坐标代入y=x2+bx+c,n=(+4)2+b(+4)+c=b2+1+c,∵b2=4c,∴n=1.故选:D.【点睛】本题考查二次函数的性质,关键在于熟悉性质,灵活运用.2、C【分析】根据圆周角定理即可得到结论.【详解】∵∠C=60°,∴∠AOB=2∠C=120°,故选:C.【点睛】本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键.3、B【分析】先判断出算式中A、B、C、D表示的图形,然后再求解A*D,A*C.【详解】∵A*B,B*C,C*D,D*B分别对应图形①、②、③、④可得出A对应竖线、B对应大正方形、C对应横线,D对应小正方形∴A*D为竖线和小正方形组合,即(2)A*C为竖线和横线的组合,即(4)故选:B【点睛】本题考查归纳总结,解题关键是根据已知条件,得出A、B、C、D分别代表的图形.4、B【解析】试题解析:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,故选B.5、C【解析】试题解析:①和的底分别相等,高也相等,所以它们的面积也相等,故正确.②和的底分别相等,高也相等,所以它们的面积也相等,并不是倍的关系.故错误.③由于是的中点,所以和的相似比为,所以它们的面积之比为.故错误.④和的底相等,高和则是的关系,所以它们的面积之比为.故正确.综上所述,符合题意的有①和④.故选C.6、A【解析】设a=k,b=2k,则.故选A.7、B【分析】根据a的符号分类,当a>0时,在A、B中判断一次函数的图象是否相符;当a<0时,在C、D中判断一次函数的图象是否相符.【详解】解:①当a>0时,二次函数y=ax2的开口向上,一次函数y=ax+a的图象经过第一、二、三象限,A错误,B正确;②当a<0时,二次函数y=ax2的开口向下,一次函数y=ax+a的图象经过第二、三、四象限,C错误,D错误.故选:B.【点睛】此题主要考查了二次函数与一次函数的图象,利用二次函数的图象和一次函数的图象的特点求解.8、A【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:,图2中的面积为:,则故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.9、A【分析】先根据圆的周长公式求得底面圆周长,再根据弧长公式即可求得结果.【详解】解:由题意得底面圆周长=π×30=30πcm,解得:n=108故选A.【点睛】本题考查圆的周长公式,弧长公式,方程思想是初中数学学习中非常重要的思想方法,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.10、B【分析】由中位线的性质得到DE∥AC,DE=AC,可知△BDE∽△BCA,再根据相似三角形面积比等于相似比的平方可得,从而得出的值.【详解】∵DE是△ABC的中位线,∴DE∥AC,DE=AC∴△BDE∽△BCA∴∴故选B.【点睛】本题考查了中位线的性质,以及相似三角形的判定与性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.11、B【分析】作辅助线,构建全等三角形:过A作GH⊥x轴,过B作BG⊥GH,过C作CM⊥ED于M,证明△AHD≌△DMC≌△BGA,设A(x,﹣),结合点B的坐标表示:BG=AH=DM=﹣1﹣x,由HQ=CM,列方程,可得x的值,进而根据三角形面积公式可得结论.【详解】过A作GH⊥x轴,过B作BG⊥GH,过C作CM⊥ED于M,设A(x,﹣),∵四边形ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∴∠BAG=∠ADH=∠DCM,∴△AHD≌△DMC≌△BGA(AAS),∴BG=AH=DM=﹣1﹣x,∴AG=CM=DH=1﹣,∵AH+AQ=CM,∴1﹣=﹣﹣1﹣x,解得:x=﹣2,∴A(﹣2,2),CM=AG=DH=1﹣=3,∵BG=AH=DM=﹣1﹣x=1,∴点E的纵坐标为3,把y=3代入y=﹣得:x=﹣,∴E(﹣,3),∴EH=2﹣=,∴DE=DH﹣HE=3﹣=,∴S△CDE=DE•CM=××3=.故选:B.【点睛】本题主要考查反比例函数图象和性质与几何图形的综合,掌握“一线三垂直”模型是解题的关键.12、B【分析】利用概率的意义直接得出答案.【详解】连续抛掷一枚质地均匀的硬币4次,前3次的结果都是正面朝上,

他第4次抛掷这枚硬币,正面朝上的概率为:.故选:B.【点睛】本题主要考查了概率的意义,正确把握概率的定义是解题关键.二、填空题(每题4分,共24分)13、或【分析】根据中位线的性质,得出的关系式,代入即可.【详解】根据中位线的性质故我们可得当均成立,故关系式正确∴故答案为:或.【点睛】本题考查了归纳总结的问题,掌握中位线的性质得出的关系式是解题的关键.14、【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD为直径的圆上.则AC为直径时最长,则最大值为4.【详解】解:设AB=x,则AD=8﹣x,∵∠BAD=∠BCD=90°,∴BD2=x2+(8﹣x)2=2(x﹣4)2+1.∴当x=4时,BD取得最小值为4.∵A,B,C,D四点在以BD为直径的圆上.如图,∴AC为直径时取得最大值.AC的最大值为4.故答案为:4.【点睛】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.15、2﹣2【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=BC=2,在Rt△ACG中,AG==2在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为2﹣2,故答案为:2﹣2【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式.16、60【分析】先计算出AD=33cm,结合已知可知AC∥DF,由由题意可知BE⊥ED,即可得到BE⊥AC,然后再求出BH的长,然后再运用锐角三角函数即可求解.【详解】解:∵车轮的直径为∴AD=33cm∵CF=33cm∴AC∥DF∴EH=AD=33cm∵BE⊥ED∴BE⊥AC∵BH=BE-EH=90-33=57cm∴∠sinACB=sin72°==0.95∴BC=57÷0.95=60cm故答案为60.【点睛】本题考查了解直角三角形的应用,将实际问题中抽象成数学问题是解答本题的关键.17、【分析】连接AB,根据PA,PB是⊙O的切线可得PA=PB,从而得出AB=6,然后利用∠P=60°得出∠CAB为30°,最后根据直角三角形中30°角的正切值进一步计算即可.【详解】如图,连接AB,∵PA,PB是⊙O的切线,∴PA=PB,∵∠P=60°,∴△ABP为等边三角形,∴AB=6,∵∠P=60°,∴∠CAB=30°,易得△ABC为直角三角形,∴,∴BC=AB×=,故答案为:.【点睛】本题主要考查了圆中切线长与三角函数的综合运用,熟练掌握相关概念是解题关键.18、【分析】①过点A作,垂足为F,得出,BF=40,利用勾股定理可得出AF的长,即A到地面的高度②过点D作,垂足为H,可得出,,可求出AH的长度,从而得出D到底面的高度为AH+AF.【详解】解:过点A作,垂足为F,过点D作,垂足为H,如下图:①∵,∴,BF=40cm∴∴A到地面的高度为:.②∵∴,∴,∴∴AH=10,∴D到底面的高度为AH+AF=(10+)cm.【点睛】本题考查的知识点是等腰三角形的性质以及相似三角形的判定与性质,解题的关键是弄清题意,结合题目作出辅助线,再利用相似三角形性质求解.三、解答题(共78分)19、(1);(2)画图见解析;(3)-3<x<1【分析】(1)运用配方法进行变形即可;(2)根据(1)中解析式可以先得出顶点坐标以及对称轴和开口方向朝下,然后进一步分别可以求出与x轴的两个交点,及其与y轴的交点,最后用光滑的曲线连接即可,;(3)根据所画出的图像得出结论即可.【详解】(1);(2)由(1)得:顶点坐标为:(-1,4),对称轴为:,开口向下,当x=0时,y=3,∴交y轴正半轴3处,当y=0时,x=1或-3,∴与x轴有两个交点,综上所述,图像如图所示:(3)根据(2)所画图像可得,,-3<x<1.【点睛】本题主要考查了二次函数图像的性质,熟练掌握相关概念是解题关键.20、1【分析】连接OB,OC,根据圆周角定理得到∠BOC=60°,根据等边三角形的性质即可得到结论.【详解】解:连接OB,OC,∵∠A=30°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OC=BC=4,∴⊙O的直径=1.【点睛】本题考查三角形的外接圆与外心,等边三角形的判定和性质,解题关键是正确的作出辅助线.21、(1)4;(2)直线“智慧数”等于;(3)抛物线的“智慧数”是;(4)抛物线的解析式为或【分析】(1)先求出点N的坐标,然后根据“坐标和”的定义计算即可;(2)求出,然后根据一次函数的增减性和“智慧数”的定义计算即可;(3)先求出抛物线的顶点坐标,即可列出关于b和c的等式,然后求出,然后利用二次函数求出y+x的最小值即可得出结论;(4)根据题意可设二次函数为,坐标和为,即可求出与x的二次函数关系式,求出与x的二次函数图象的对称轴,先根据已知条件求出m的取值范围,然后根据与对称轴的相对位置分类讨论,分别求出的最小值列出方程即可求出结论.【详解】解:(1)将y=2代入到解得x=2∴点N的坐标为(2,2)∴点的“坐标和”是2+2=4故答案为:4;(2),∵,∴当时,最小,即直线,“智慧数”等于(3)抛物线的顶点坐标为,∴,即∵,∴的最小值是∴抛物线的“智慧数”是;(4)∵二次函数的图象的顶点在直线上,∴设二次函数为,坐标和为对称轴∵∴①当时,即时,“坐标和”随的增大而增大∴把代入,得,解得(舍去),,当时,②当,即时,,即,解得,当时,③当时,∵,所以此情况不存在综上,抛物线的解析式为或【点睛】此题考查的新定义类问题、二次函数、一次函数和反比例函数的综合题型,掌握新定义、利用二次函数和一次函数求最值是解决此题的关键.22、证明见解析.【解析】试题分析:由BC∥OP可得∠AOP=∠B,根据直径所对的圆周角为直角可知∠C=90°,再根据切线的性质知∠OAP=90°,从而可证△ABC∽△POA.试题解析:证明:∵BC∥OP,∴∠AOP=∠B,∵AB是直径,∴∠C=90°,∵PA是⊙O的切线,切点为A,∴∠OAP=90°,∴∠C=∠OAP,∴△ABC∽△POA.考点:1.切线的性质;2.相似三角形的判定.23、(1);(2);(3)存在,,.【解析】(1)可根据OB、OC的长得出B、C两点的坐标,然后用待定系数法即可求出抛物线的解析式.

(2)可将四边形ACPQ分成直角三角形AOC和直角梯形CQPC两部分来求解.先根据抛物线的解析式求出A点的坐标,即可得出三角形AOC直角边OA的长,据此可根据上面得出的四边形的面积计算方法求出S与m的函数关系式.

(3)先根据抛物线的解析式求出M的坐标,进而可得出直线BM的解析式,据此可设出N点的坐标,然后用坐标系中两点间的距离公式分别表示出CM、MN、CN的长,然后分三种情况进行讨论:①CM=MN;②CM=CN;③MN=CN.根据上述三种情况即可得出符合条件的N点的坐标.【详解】解:(1)∵,∴,.∴,解得,∴二次函数的解析式为;(2),设直线的解析式为,则有解得∴直线的解析式为∵轴,,∴点的坐标为;(3)线段上存在点,使为等腰三角形.设点坐标为则:,,①当时,解得,(舍去)此时②当时,,解得,(舍去),此时③当时,解得,此时.【点睛】本题考查了二次函数解析式的确定、图形的面积求法、函数图象交点、等腰三角形的判定等知识及综合应用知识、解决问题的能力.考查学生分类讨论、数形结合的数学思想方法.24、(1)D点的坐标为(1,1);(1)y=﹣x1+3x﹣1;(3)1≤MN≤;(4)所有符合条件的c的值为﹣1,1,﹣1.【分析】(1)根据正方形的性质,可得D点的坐标;(1)根据待定系数法,可得函数解析式;(3)根据顶点横坐标纵坐标越大,与x轴交点的线段越长,根据顶点横坐标纵坐标越小,与x轴交点的线段越短,可得答案;(4)根据待定系数法,可得c的值,要分类讨论,以防遗漏.【详解】解:(1)由正方形ABCD内或边上,已知点A(1,1),B(1,1),C(1,1),得D点的横坐标等于C点的横坐标,即D点的横坐标为1,D点的纵坐标等于A点的纵坐标,即D点的纵坐标为1,D点的坐标为(1,1);(1)把B(1,1)、C(1,1)代入解析式可得:,解得:所以二次函数的解析式为y=﹣x1+3x﹣1;(3)由此时顶点E的坐标为(1,1),得:抛物线解析式为y=﹣(x﹣1)1+1把y=0代入得:﹣(x﹣1)1+1=0解得:x1=1﹣,x1=1+,即N(1+,0),M(1﹣,0),所以MN=1+﹣(1﹣)=1.点E的坐标为B(1,1),得:抛物线解析式为y=﹣(x﹣1)1+1把y=0代入得:﹣(x﹣1)1+1=0解得:x1=0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论