云南省腾冲市十五所学校2022-2023学年数学九上期末监测模拟试题含解析_第1页
云南省腾冲市十五所学校2022-2023学年数学九上期末监测模拟试题含解析_第2页
云南省腾冲市十五所学校2022-2023学年数学九上期末监测模拟试题含解析_第3页
云南省腾冲市十五所学校2022-2023学年数学九上期末监测模拟试题含解析_第4页
云南省腾冲市十五所学校2022-2023学年数学九上期末监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,是等边三角形,被一矩形所截,被截成三等分,EH∥BC,则四边形的面积是的面积的:()A. B. C. D.2.下列四个点中,在反比例函数y=的图象上的是()A.(﹣3,﹣2) B.(3,2) C.(﹣2,3) D.(﹣2,﹣3)3.在平面直角坐标系中,点所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.把二次函数y=﹣(x+1)2﹣3的图象沿着x轴翻折后,得到的二次函数有()A.最大值y=3 B.最大值y=﹣3 C.最小值y=3 D.最小值y=﹣35.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=4,cos∠ABC=,则BD的长为()A.2 B.4 C.2 D.46.在一个万人的小镇,随机调查了人,其中人看某电视台的早间新闻,在该镇随便问一个人,他看该电视台早间新闻的概率大约是()A. B. C. D.7.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A. B. C. D.8.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4 B.5 C.6 D.69.已知关于x的方程x2﹣x+m=0的一个根是3,则另一个根是()A.﹣6 B.6 C.﹣2 D.210.如图,四边形的顶点坐标分别为.如果四边形与四边形位似,位似中心是原点,它的面积等于四边形面积的倍,那么点的坐标可以是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,将放在边长为1的小正方形组成的网格中,若点A,O,B都在格点上,则___________________.12.如图,在边长为1的正方形网格中,.线段与线段存在一种变换关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为__________.13.已知⊙半径为,点在⊙上,,则线段的最大值为_____.14.若=,则的值为______.15.如图,港口A在观测站O的正东方向,OA=4.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为____.

16.如图,点A,B是双曲线上的点,分别过点A,B作轴和轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为____________.17.如图,在菱形中,对角线交于点,过点作于点,已知BO=4,S菱形ABCD=24,则___.18.如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=____________.三、解答题(共66分)19.(10分)用适当的方法解下列一元二次方程.(1);(2).20.(6分)在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为1.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点E的坐标;(3)若点为轴上任意一点,在(2)的结论下,求的最小值.21.(6分)(1)解方程:(2)计算:22.(8分)如图1,在矩形中,,,是边上一点,连接,将矩形沿折叠,顶点恰好落在边上点处,延长交的延长线于点.(1)求线段的长;(2)如图2,,分别是线段,上的动点(与端点不重合),且.①求证:∽;②是否存在这样的点,使是等腰三角形?若存在,请求出的长;若不存在,请说明理由.23.(8分)解方程:

24.(8分)解方程:+3x-4=025.(10分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=1.求DE的长.26.(10分)我市某校准备成立四个活动小组:.声乐,.体育,.舞蹈,.书画,为了解学生对四个活动小组的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中必须选择而且只能选择一个小组,根据调查结果绘制如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次抽样调查共抽查了名学生,扇形统计图中的值是;(2)请补全条形统计图;(3)喜爱“书画”的学生中有两名男生和两名女生表现特别优秀,现从这4人中随机选取两人参加比赛,请用列表或画树状图的方法求出所选的两人恰好是一名男生和一名女生的概率.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据题意,易证△AEH∽△AFG∽△ABC,利用相似比,可求出S△AEH、S△AFG与S△ABC的面积比,从而表示出S△AEH、S△AFG,再求出四边形EFGH的面积即可.【详解】∵在矩形中FG∥EH,且EH∥BC,∴FG∥EH∥BC,∴△AEH∽△AFG∽△ABC,∵AB被截成三等分,∴,,∴S△AEH:S△ABC=1:9,S△AFG:S△ABC=4:9,∴S△AEH=S△ABC,S△AFG=S△ABC,∴S四边形EFGH=S△AFG-S△AEH=S△ABC-S△ABC=S△ABC.故选:B.【点睛】本题考查相似三角形的判定与性质,明确面积比等于相似比的平方是解题的关键.2、C【分析】先分别计算四个点的横、纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】解:∵﹣3×(﹣2)=6,3×2=6,﹣2×3=﹣6,﹣2×(﹣3)=6,∴点(﹣2,3)在反比例函数y=的图象上.故选:C.【点睛】此题考查的是判断在反比例函数图象上的点,掌握点的横、纵坐标之积等于反比例函数的比例系数即可判断该点在反比例函数图象上是解决此题的关键.3、D【分析】根据各象限内点的坐标特征进行判断即可得.【详解】因则点位于第四象限故选:D.【点睛】本题考查了平面直角坐标系象限的性质,象限的符号规律:第一象限、第二象限、第三象限、第四象限,熟记象限的性质是解题关键.4、C【分析】根据二次函数图象与几何变换,将y换成-y,整理后即可得出翻折后的解析式,根据二次函数的性质即可求得结论.【详解】把二次函数y=﹣(x+1)2﹣3的图象沿着x轴翻折后得到的抛物线的解析式为﹣y=﹣(x+1)2﹣3,整理得:y=(x+1)2+3,所以,当x=﹣1时,有最小值3,故选:C.【点睛】本题考查了二次函数图象与几何变换,求得翻折后抛物线解析式是解题的关键.5、D【分析】由锐角三角函数可求∠ABC=60°,由菱形的性质可得AB=BC=4,∠ABD=∠CBD=30°,AC⊥BD,由直角三角形的性质可求BO=OC=2,即可求解.【详解】解:∵cos∠ABC=,∴∠ABC=60°,∵四边形ABCD是菱形,∴AB=BC=4,∠ABD=∠CBD=30°,AC⊥BD,∴OC=BC=2,BO=OC=2,∴BD=2BO=4,故选:D【点睛】此题主要考查三角函数的应用,解题的关键是熟知菱形的性质及解直角三角形的方法.6、D【解析】根据等可能事件的概率公式,即可求解.【详解】÷=,答:他看该电视台早间新闻的概率大约是.故选D.【点睛】本题主要考查等可能事件的概率公式,掌握概率公式,是解题的关键.7、A【分析】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.【详解】∵AB为直径,∴∠ACB=90°,∵AC=BC=,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S阴影部分=S扇形AOC=.故选A.【点睛】本题考查了扇形面积的计算:圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.8、D【解析】试题解析:∵OC⊥AB,OC过圆心O点,在中,由勾股定理得:故选D.点睛:垂直于弦的直径平分弦并且平分弦所对的两条弧.9、C【分析】由于已知方程的二次项系数和一次项系数,所以要求方程的另一根,可利用一元二次方程的两根之和与系数的关系.【详解】解:设a是方程x1﹣5x+k=0的另一个根,则a+3=1,即a=﹣1.故选:C.【点睛】此题主要考查一元二次方程的根,解题的关键是熟知一元二次方程根与系数的关系.10、B【分析】根据位似图形的面积比得出相似比,然后根据各点的坐标确定其对应点的坐标即可.【详解】解:∵四边形OABC与四边形O′A′B′C′关于点O位似,且四边形的面积等于四边形OABC面积的,∴四边形OABC与四边形O′A′B′C′的相似比为2:3,∵点A,B,C分别的坐标),∴点A′,B′,C′的坐标分别是(3,0),(6,6),(-3,3)或(-3,0),(-6,-6),(3,-3).

故选:B.【点睛】本题考查了位似变换及坐标与图形的知识,解题的关键是根据两图形的面积的比确定其位似比,注意有两种情况.二、填空题(每小题3分,共24分)11、2【分析】利用网格特征,将∠AOB放到Rt△AOD中,根据正切函数的定理即可求出tan∠AOB的值.【详解】如图,将∠AOB放到Rt△AOD中,∵AD=2,OD=1∴tan∠AOB=故答案为:2.【点睛】本题考查在网格图中求正切值,利用网格的特征将将∠AOB放到直角三角形中是解题的关键.12、或【分析】根据旋转后的对应关系分类讨论,分别画出对应的图形,作出对应点连线的垂直平分线即可找到旋转中心,最后根据点A的坐标即可求结论.【详解】解:①若旋转后点A的对应点是点C,点B的对称点是点D,连接AC和BD,分别作AC和BD的垂直平分线,两个垂直平分线交于点O,根据垂直平分线的性质可得OA=OC,OB=OD,故点O即为所求,∵,∴由图可知:点O的坐标为(5,2);②若旋转后点A的对应点是点D,点B的对称点是点C,连接AD和BC,分别作AD和BC的垂直平分线,两个垂直平分线交于点O,根据垂直平分线的性质可得OA=OD,OB=OC,故点O即为所求,∵,∴由图可知:点O的坐标为综上:这个旋转中心的坐标为或故答案为:或.【点睛】此题考查的是根据旋转图形找旋转中心,掌握垂直平分线的性质及作法是解决此题的关键.13、【分析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵,∴,∴,∵,∴,∴,∴,又∵,∴,∵,∴,又∵,∴,∴,∴,在△OEB中,根据三角形三边关系可得:,∵,∴,∴BE的最大值为:,∴OC的最大值为:.【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形.14、4【分析】由=可得,代入计算即可.【详解】解:∵=,∴,则故答案为:4.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.15、1【解析】过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=1,再由△ABD是等腰直角三角形,得出BD=AD=1,则AB=AD=1.【详解】如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=1.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,∴BD=AD=1,∴AB=AD=1.即该船航行的距离(即AB的长)为1.故答案为1.【点睛】本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.16、1.【解析】试题分析:∵点A、B是双曲线上的点,∴S矩形ACOG=S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ACDF+S矩形BDGE=6+6﹣2﹣2=1,故答案为1.考点:反比例函数系数k的几何意义.17、【分析】根据菱形面积=对角线积的一半可求,再根据勾股定理求出,然后由菱形的面积即可得出结果.【详解】∵四边形是菱形,∴,,∴,∵,∴,∴,∴,∵,∴;故答案为.【点睛】本题考查了菱形的性质、勾股定理以及菱形面积公式.熟练掌握菱形的性质,由勾股定理求出是解题的关键.18、【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【详解】如图,过点D作DF⊥BC于F,∵△ABC,△PQC是等边三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ≌△BCP(SAS)∴AQ=BP,∠CAQ=∠CBP,∵AC=6,AD=2,∴CD=4,∵∠ACB=60°,DF⊥BC,∴∠CDF=30°,∴CF=CD=2,DF=CF÷tan30°=CF=2,∴BF=4,∴BD===2,∵△CPQ是等边三角形,∴S△CPQ=CP2,∴当CP⊥BD时,△CPQ面积最小,∴cos∠CBD=,∴,∴BP=,∴AQ=BP=,∵∠CAQ=∠CBP,∠ADE=∠BDC,∴△ADE∽△BDC,∴,∴,∴AE=,∴QE=AQ−AE=.故答案为;.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP的长是本题的关键.三、解答题(共66分)19、(1),;(2),.【分析】(1)把原方程化成一元二次方程的一般形式,利用公式法解方程即可;(2)按照平方差公式展开、合并,再利用十字相乘法解方程即可.【详解】(1)整理得:,∵,∴,∴,∴,.(2)整理得:,∴,∴x+4=0或x-2=0,解得:,.【点睛】本题考查解一元二次方程,一元二次方程的常用解法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.20、(1);;(2)的面积最大值是,此时点坐标为;(2)的最小值是2.【分析】(1)先写出平移后的抛物线解析式,再把点代入可求得的值,由的面积为1可求出点的纵坐标,代入抛物线解析式可求出横坐标,由、的坐标可利用待定系数法求出一次函数解析式;(2)作轴交于,如图,利用三角形面积公式,由构建关于E点横坐标的二次函数,然后利用二次函数的性质即可解决问题;(2)作关于轴的对称点,过点作于点,交轴于点,则,利用锐角三角函数的定义可得出,此时最小,求出最小值即可.【详解】解:(1)将二次函数的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为,∵,∴点的坐标为,代入抛物线的解析式得,,∴,∴抛物线的解析式为,即.令,解得,,∴,∴,∵的面积为1,∴,∴,代入抛物线解析式得,,解得,,∴,设直线的解析式为,∴,解得:,∴直线的解析式为.(2)过点作轴交于,如图,设,则,∴,∴,,∴当时,的面积有最大值,最大值是,此时点坐标为.(2)作关于轴的对称点,连接交轴于点,过点作于点,交轴于点,∵,,∴,,∴,∵,∴,∴,∵、关于轴对称,∴,∴,此时最小,∵,,∴,∴.∴的最小值是2.【点睛】主要考查了二次函数的平移和待定系数法求函数的解析式、二次函数的性质、相似三角形的判定与性质、锐角三角函数的有关计算和利用对称的性质求最值问题.解(1)题的关键是熟练掌握待定系数法和相关点的坐标的求解;解(2)题的关键是灵活应用二次函数的性质求解;解(2)题的关键是作关于轴的对称点,灵活应用对称的性质和锐角三角函数的知识,学会利用数形结合的思想和转化的数学思想把求的最小值转化为求的长度.21、(1);(2)-1【分析】(1)方程因式分解后即可求出解;(2)原式利用特殊角的三角函数值计算,即可得到结果.【详解】(1),,;(2)=1-2=-1【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.22、(1)2;(2)①见解析;②存在.由①得△DMN∽△DGM,理由见解析【分析】(1)根据矩形的性质和折叠的性质得出AD=AF、DE=EF,进而设EC=x,则DE=EF=8﹣x,利用勾股定理求解即可得出答案;(2)①根据平行线的性质得出△DAE∽△CGE求得CG=6,进而根据勾股定理求出DG=1,得出AD=DG,即可得出答案;②假设存在,由①可得当△DGM是等腰三角形时△DMN是等腰三角形,分两种情况进行讨论:当MG=DG=1时,结合勾股定理进行求解;当MG=DM时,作MH⊥DG于H,证出△GHM∽△GBA,即可得出答案.【详解】解:(1)如图1中,∵四边形ABCD是矩形,∴AD=BC=1,AB=CD=8,∠B=∠BCD=∠D=90°,由翻折可知:AD=AF=1.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ABF中,BF==6,∴CF=BC﹣BF=1﹣6=4,在Rt△EFC中,则有:(8﹣x)2=x2+42,∴x=2,∴EC=2.(2)①如图2中,∵AD∥CG,∴∠DAE=∠CGE,∠ADE=∠GCE∴△DAE∽△CGE∴=,∴,∴CG=6,∴在Rt△DCG中,,∴AD=DG∴∠DAG=∠AGD,∵∠DMN=∠DAM∴∠DMN=∠DGM∵∠MDN=∠GDM∴△DMN∽△DGM②存在.由①得△DMN∽△DGM∴当△DGM是等腰三角形时△DMN是等腰三角形有两种情形:如图2﹣1中,当MG=DG=1时,∵BG=BC+CG=16,∴在Rt△ABG中,,∴AM=AG-MG=.如图2﹣2中,当MG=DM时,作MH⊥DG于H.∴DH=GH=5,由①得∠DGM=∠DAG=∠AGB∵∠MHG=∠B∴△GHM∽△GBA∴,∴,∴,∴.综上所述,AM的长为或.【点睛】本题考查的是矩形综合,难度偏高,需要熟练掌握矩形的性质、勾股定理和相似三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论