云南省昆明市祯祥初级中学2022-2023学年数学九上期末学业质量监测试题含解析_第1页
云南省昆明市祯祥初级中学2022-2023学年数学九上期末学业质量监测试题含解析_第2页
云南省昆明市祯祥初级中学2022-2023学年数学九上期末学业质量监测试题含解析_第3页
云南省昆明市祯祥初级中学2022-2023学年数学九上期末学业质量监测试题含解析_第4页
云南省昆明市祯祥初级中学2022-2023学年数学九上期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在菱形中,,,则对角线等于()A.2 B.4 C.6 D.82.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,若BO=6cm,OC=8cm则BE+CG的长等于()A.13 B.12 C.11 D.103.如图,正方形中,点是以为直径的半圆与对角线的交点.现随机向正方形内投掷一枚小针,则针尖落在阴影区域的概率为()A. B. C. D.4.下列图形中,是相似形的是()A.所有平行四边形 B.所有矩形 C.所有菱形 D.所有正方形5.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1086.如图,在▱ABCD中,AB:BC=4:3,AE平分∠DAB交CD于点E,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.4:3 D.16:97.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-18.如图,正方形ABCD中,点EF分别在BC、CD上,△AEF是等边三角形,连AC交EF于G,下列结论:①∠BAE=∠DAF=15°;②AG=GC;③BE+DF=EF;④S△CEF=2S△ABE,其中正确的个数为()A.1 B.2 C.3 D.49.如图,与正方形ABCD的两边AB,AD相切,且DE与相切于点E.若的半径为5,且,则DE的长度为()A.5 B.6 C. D.10.下列说法正确的是()A.等弧所对的圆心角相等 B.平分弦的直径垂直于这条弦C.经过三点可以作一个圆 D.相等的圆心角所对的弧相等11.已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是(

)A.

B.

C.

D.12.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)二、填空题(每题4分,共24分)13.二次函数的图象经过点(4,﹣3),且当x=3时,有最大值﹣1,则该二次函数解析式为_____.14.今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤元上涨到第三季度的每公斤元,则该超市的排骨价格平均每个季度的增长率为________.15.在直径为4cm的⊙O中,长度为的弦BC所对的圆周角的度数为____________.16.两个相似多边形的一组对应边分别为2cm和3cm,那么对应的这两个多边形的面积比是__________17.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段的长为________.18.已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为_____cm1.(结果保留π)三、解答题(共78分)19.(8分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?20.(8分)平行四边形中,点为上一点,连接交对角线于点,点为上一点,于,且,点为的中点,连接;若.(1)求的度数;(2)求证:21.(8分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C,(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.22.(10分)如图,在⊙O中,,∠ACB=60°,求证∠AOB=∠BOC=∠COA.23.(10分)如图,反比例函数()的图象与一次函数的图象交于,两点.(1)分别求出反比例函数与一次函数的表达式.(2)当反比例函数的值大于一次函数的值时,请根据图象直接写出的取值范围.24.(10分)数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?25.(12分)如图,中,,是斜边上一个动点,以为直径作交于点,与的另一个交点,连接.(1)当时,①若,求的度数;②求证;(2)当,时,是否存在点,使得是等腰三角形,若存在,求出所有符合条件的的长.26.网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型的快递公司,今年5月份与7月份完成快递件数分别为5万件和5.832份万件,假定每月投递的快递件数的增长率相同.(1)求该快递公司投递的快递件数的月平均增长率;(2)如果每个快递小哥平均每月最多可投递0.8万件,公司现有8个快递小哥,按此快递增长速度,不增加人手的情况下,能否完成今年9月份的投递任务?

参考答案一、选择题(每题4分,共48分)1、A【分析】由菱形的性质可证得为等边三角形,则可求得答案.【详解】四边形为菱形,,,,,为等边三角形,,故选:.【点睛】主要考查菱形的性质,利用菱形的性质证得为等边三角形是解题的关键.2、D【解析】根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBF+∠OCF=90°,∴∠BOC=90°,∵OB=6cm,OC=8cm,∴BC=10cm,∴BE+CG=BC=10cm,故选D.【点睛】本题主要考查了切线长定理,涉及到平行线的性质、勾股定理等,求得BC的长是解题的关键.3、B【分析】连接BE,如图,利用圆周角定理得到∠AEB=90°,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=△BCE的面积,然后用△BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率.【详解】解:连接BE,如图,

∵AB为直径,

∴∠AEB=90°,

而AC为正方形的对角线,

∴AE=BE=CE,

∴弓形AE的面积=弓形BE的面积,

∴阴影部分的面积=△BCE的面积,

∴镖落在阴影部分的概率=.

故选:B.【点睛】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积.也考查了正方形的性质.4、D【分析】根据对应角相等,对应边成比例的两个多边形相似,依次分析各项即可判断.【详解】所有的平行四边形、矩形、菱形均不一定是相似多边形,而所有的正方形都是相似多边形,故选D.【点睛】本题是判定多边形相似的基础应用题,难度一般,学生只需熟练掌握特殊四边形的性质即可轻松完成.5、A【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解.【详解】设每次降价的百分率为x,根据题意得:168(1-x)2=1.故选A.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.6、B【分析】根据相似三角形的面积比等于相似比的平方即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA,∴AD=DE,∵AB:BC=4:3,∴DE:AB=3:4,∵△DEF∽△BAF,∵DE:EC=3:1,∴DE:DC=DE:AB=3:4,∴.故选:B.【点睛】本题考查平行四边形的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7、C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.8、C【解析】通过条件可以得出△ABE≌△ADF而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,用含x的式子表示的BE、EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE再通过比较大小就可以得出结论.【详解】①∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵△AEF等边三角形,∴AE=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∴AC是EF的垂直平分线,∴AC平分∠EAF,∴∠EAC=∠FAC=×60°=30°,∵∠BAC=∠DAC=45°,∴∠BAE=∠DAF=15°,故①正确;②设EC=x,则FC=x,由勾股定理,得EF=x,CG=EF=x,AG=AEsin60°=EFsin60°=2×CGsin60°=2×CG,∴AG=CG,故②正确;③由②知:设EC=x,EF=x,AC=CG+AG=CG+CG=,∴AB==,∴BE=AB﹣CE=﹣x=,∴BE+DF=2×=(﹣1)x≠x,故③错误;④S△CEF=,S△ABE=BE•AB=,∴S△CEF=2S△ABE,故④正确,所以本题正确的个数有3个,分别是①②④,故选C.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.9、B【分析】连接OE,OF,OG,根据切线性质证四边形ABCD为正方形,根据正方形性质和切线长性质可得DE=DF.【详解】连接OE,OF,OG,

∵AB,AD,DE都与圆O相切,

∴DE⊥OE,OG⊥AB,OF⊥AD,DF=DE,

∵四边形ABCD为正方形,

∴AB=AD=11,∠A=90°,

∴∠A=∠AGO=∠AFO=90°,

∵OF=OG=5,

∴四边形AFOG为正方形,

则DE=DF=11-5=6,

故选:B【点睛】考核知识点:切线和切线长定理.作辅助线,利用切线长性质求解是关键.10、A【分析】根据圆心角、弧、弦的关系、确定圆的条件、垂径定理的知识进行判断即可.【详解】等弧所对的圆心角相等,A正确;平分弦的直径垂直于这条弦(此弦不能是直径),B错误;经过不在同一直线上的三点可以作一个圆,C错误;相等的圆心角所对的弧不一定相等,故选A.【点睛】此题考查圆心角、弧、弦的关系,解题关键在于掌握以及圆心角、弧、弦的关系11、B【解析】分析:根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛:考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.12、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,∵其中一个交点的坐标为,则另一个交点的坐标为,故选C.【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质.二、填空题(每题4分,共24分)13、y=﹣2(x﹣3)2﹣1【分析】根据题意设出函数的顶点式,代入点(4,﹣3),根据待定系数法即可求得.【详解】∵当x=3时,有最大值﹣1,∴设二次函数的解析式为y=a(x﹣3)2﹣1,把点(4,﹣3)代入得:﹣3=a(4﹣3)2﹣1,解得a=﹣2,∴y=﹣2(x﹣3)2﹣1.故答案为:y=﹣2(x﹣3)2﹣1.【点睛】本题考查了待定系数法求二次函数的解析式,熟练掌握待定系数法是解题的关键.14、【分析】等量关系为:第一季度的猪肉价格×(1+增长率)2=第三季度的猪肉价格【详解】解:设平均每个季度的增长率为g,∵第一季度为每公斤元,第三季度为每公斤元,,解得.∴平均每个季度的增长率.故答案为:.【点睛】本题考查了一元二次方程的应用,是常考查的增长率问题,解题的关键是熟悉有关增长率问题的有关等式.15、60°或120°【分析】如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出∠OCF的大小,进而求出∠BOC的大小,再由圆周角定理可求出∠D、∠E大小,进而得到弦BC所对的圆周角.【详解】解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为∠D或∠E,如下图所示,作OF⊥BC,由垂径定理可知,F为BC的中点,∴CF=BF=BC=,又直径为4cm,∴OC=2cm,在Rt△AOC中,cos∠OCF=,∴∠OCF=30°,∵OC=OB,∴∠OCF=∠OBF=30°,∴∠COB=120°,∴∠D=∠COB=60°,又圆内接四边形的对角互补,∴∠E=120°,则弦BC所对的圆周角为60°或120°.故答案为:60°或120°.【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键.16、4:9【分析】根据相似三角形面积的比等于相似比的平方列式计算即可.【详解】解:因为两个三角形相似,

∴较小三角形与较大三角形的面积比为()2=,故答案为:.【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.17、【解析】已知BC=8,AD是中线,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根据相似三角形的性质可得,即可得AC2=CD•BC=4×8=32,解得AC=4.18、60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线.三、解答题(共78分)19、(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售价定为130元时,每天获得的利润最大,最大利润是2元.【解析】(1)先利用待定系数法求一次函数解析式;(2)用每件的利润乘以销售量得到每天的利润W,即W=(x﹣90)(﹣x+170),然后根据二次函数的性质解决问题.【详解】(1)设y与x之间的函数关系式为y=kx+b,根据题意得:,解得:,∴y与x之间的函数关系式为y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴当x=130时,W有最大值2.答:售价定为130元时,每天获得的利润最大,最大利润是2元.【点睛】本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=每件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x的取值范围.20、(1)30°(2)证明见解析【分析】(1)通过平行四边形的性质、中点的性质、平行线的性质去证明,可得,再根据求解即可;(2)延长FE至点N,使,连接AN,通过证明,可得,再根据特殊角的锐角三角函数值,即可得证.【详解】(1)∵四边形ABCD为平行四边形∵M为AD的中点即即;(2)延长FE至点N,使,连接AN,由(1)知,.【点睛】本题考查了平行四边形的综合问题,掌握平行四边形的性质、平行线的性质、全等三角形的性质以及判定定理、特殊三角函数值是解题的关键.21、(1)证明见解析;(1)BC=1.【解析】试题分析:(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(1)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.试题解析:(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(1)解:∵⊙O的半径为1,∴OB=1,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=1.考点:切线的判定22、详见解析.【解析】试题分析:根据弧相等,则对应的弦相等从而证明AB=AC,则△ABC易证是等边三角形,然后根据同圆中弦相等,则对应的圆心角相等即可证得.试题解析:证明:∵,∴AB=AC,△ABC为等腰三角形(相等的弧所对的弦相等)∵∠ACB=60°∴△ABC为等边三角形,AB=BC=CA∴∠AOB=∠BOC=∠COA(相等的弦所对的圆心角相等)23、(1),;(2)或【分析】(1)将点A的坐标代入中求出k的值,即可得出反比例函数的表达式;再将点B的坐标代入反比例函数中求得m的值,得出点B的坐标,用待定系数法便可求出一次函数的解析式.(2)根据函数图象可直接解答.【详解】(1)∵在()的图象上,∴,∴,∴反比例函数的表达式为.∵在的图象上,∴,∴,∴.∵点、在的图象上,∴解得∴一次函数的表达式为.(2)根据图象即可得出的取值范围:或.【点睛】本题考查了一次函数及反比例函数的交点问题,能够正确看图象是解题的关键.24、当每箱牛奶售价为50元时,平均每天的利润为900元.【解析】试题分析:本题可设每箱牛奶售价为x元,则每箱赢利(x-40)元,平均每天可售出(30+3(70-x))箱,根据每箱的盈利×销售的箱数=销售这种牛奶的盈利,据此即可列出方程,求出答案.试题解析:设每箱售价为x元,根据题意得:(x-40)[30+3(70-x)]=900化简得:x²-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论