山东省无棣县联考2022-2023学年数学九上期末教学质量检测试题含解析_第1页
山东省无棣县联考2022-2023学年数学九上期末教学质量检测试题含解析_第2页
山东省无棣县联考2022-2023学年数学九上期末教学质量检测试题含解析_第3页
山东省无棣县联考2022-2023学年数学九上期末教学质量检测试题含解析_第4页
山东省无棣县联考2022-2023学年数学九上期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,过以为直径的半圆上一点作,交于点,已知,,则的长为()A.7 B.8 C.9 D.102.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=-n2+15n-36,那么该企业一年中应停产的月份是()A.1月,2月 B.1月,2月,3月 C.3月,12月 D.1月,2月,3月,12月3.已知圆锥的底面半径为3cm,母线为5cm,则圆锥的侧面积是()A.30πcm2 B.15πcm2 C.cm2 D.10πcm24.下列事件中,是必然事件的是()A.经过有交通信号灯的路口,遇到红灯 B.明天太阳从西方升起C.三角形内角和是 D.购买一张彩票,中奖5.如图,D,E分别是△ABC的边AB,AC上的中点,CD与BE交于点O,则S△DOE:S△BOC的值为()A. B. C. D.6.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116° B.32° C.58° D.64°7.如图,有一块直角三角形余料ABC,∠BAC=90°,D是AC的中点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,点G在AB上,若BF=4.5cm,CE=2cm,则纸条GD的长为()A.3cm B.cm C.cm D.cm8.若点与点关于原点成中心对称,则的值是()A.1 B.3 C.5 D.79.下列二次根式中,是最简二次根式的是()A. B. C. D.10.一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C.D.二、填空题(每小题3分,共24分)11.在一个不透明的箱子中,共装有白球、红球、黄球共60个,这些球的形状、大小、质地等完全相同.小华通过多次试验后发现,从盒子中摸出红球的频率是15%,摸出白球的频率是45%,那么可以估计盒子中黄球的个数是_____.12.如图,在Rt△ABC中,∠C=90°,点D为BC上一点,AD=BD,CD=1,AC=,则∠B的度数为_________________.13.分母有理化:=_____.14.如图,点在反比例函数的图象上,过点作坐标轴的垂线交坐标轴于点、,则矩形的面积为_________.15.如图,⊙O的半径OC=10cm,直线l⊥OC,垂足为H,交⊙O于A,B两点,AB=16cm,直线l平移____________cm时能与⊙O相切.16.方程x2=x的解是_____.17.在这三个数中,任选两个数的积作为的值,使反例函数的图象在第二、四象限的概率是______.18.在等边三角形中,于点,点分别是上的动点,沿所在直线折叠后点落在上的点处,若是等腰三角形,则____.三、解答题(共66分)19.(10分)如图所示的是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC,BC表示铁夹的两个面,O点是轴,OD⊥AC于点D,且AD=15mm,DC=24mm,OD=10mm.已知文件夹是轴对称图形,试利用图②,求图①中A,B两点间的距离.20.(6分)如图,在平面直角坐标系中,的三个顶点分别为.(1)点关于原点对称点分别为点,,写出点,的坐标;(2)作出关于原点对称的图形;(3)线段与线段的数量关系是__________,线段与线段的关系是__________.21.(6分)解方程:(x+3)2=2x+1.22.(8分)我区某校组织了一次“诗词大会”,张老师为了选拔本班学生参加,对本班全体学生诗词的掌握情况进行了调查,并将调查结果分为了三类:A:好,B:中,C:差.请根据图中信息,解答下列问题:(1)全班学生共有人;(2)扇形统计图中,B类占的百分比为%,C类占的百分比为%;(3)将上面的条形统计图补充完整;(4)小明被选中参加了比赛.比赛中有一道必答题是:从下表所示的九宫格中选取七个字组成一句诗,其答案为“便引诗情到碧霄”.小明回答该问题时,对第四个字是选“情”还是选“青”,第七个字是选“霄”还是选“宵”,都难以抉择,若分别随机选择,请用列表或画树状图的方法求小明回答正确的概率.情到碧霄诗青引宵便23.(8分)在平面直角坐标系中,存在抛物线以及两点和.(1)求该抛物线的顶点坐标;(2)若该抛物线经过点,求此抛物线的表达式;(3)若该抛物线与线段只有一个公共点,结合图象,求的取值范围.24.(8分)用适当的方法解下列一元二次方程(1)x2+2x=3;(2)2x2﹣6x+3=1.25.(10分)先化简,再求值:,其中x=sin45°,y=cos60°.26.(10分)某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资.已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为(元),年销售量为(万件),年获利为(万元)。(年获利=年销售额—生产成本—投资)(1)试写出与之间的函数关系式;(2)请通过计算说明,到第一年年底,当取最大值时,销售单价定为多少?此时公司是盈利了还是亏损了?

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据条件得出,解直角三角形求出BD,根据勾股定理求出CD,代入,即可求出AC的长.【详解】∵AB为直径,

∴,

∵CD⊥AB,

∴,

∴,

∴,

∵,BC=6,

∴,∴,∴,∵,∴,∴.

故选:B.【点睛】本题考查了圆周角定理,勾股定理,解直角三角形的应用,能够正确解直角三角形是解此题的关键.2、D【详解】当-n2+15n-36≤0时该企业应停产,即n2-15n+36≥0,n2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D3、B【解析】试题解析:∵底面半径为3cm,∴底面周长6πcm∴圆锥的侧面积是×6π×5=15π(cm2),故选B.4、C【分析】必然事件就是一定发生的事件,依据定义即可判断【详解】解:A.经过有交通信号灯的路口,遇到红灯是随机事件;B.明天太阳从西方升起是不可能事件;C.任意画一个三角形,其内角和是是必然事件;D.购买一张彩票,中奖是随机事件;故选:【点睛】本题考查的是必然事件,必然事件是一定发生的事件.5、C【分析】DE为△ABC的中位线,则DE∥BC,DE=BC,再证明△ODE∽△OCB,由相似三角形的性质即可得到结论.【详解】解:∵点D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∴∠ODE=∠OCB,∠OED=∠OBC,∴△ODE∽△OCB,∴,故选:C.【点睛】本题考查了相似三角形的判定与性质,三角形中位线定理,熟练掌握相似三角形的性质定理是解题的关键.6、B【分析】根据圆周角定理求得:∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半)、∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);根据平角是180°知∠BOD=180°﹣∠AOD,∴∠BCD=32°.【详解】解:连接OD.∵AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,∴∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半);又∵∠BOD=180°﹣∠AOD,∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);∴∠BCD=32°;故答案为B.【点睛】本题主要考查了圆周角定理,理解同弧所对的圆周角是所对的圆心角的一半是解答本题的关键.7、C【详解】∵四边形DEFG是矩形,∴GD∥EF,GD=EF,∵D是AC的中点,∴GD是△ABC的中位线,∴,∴,解得:GD=.故选D.8、C【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点与点关于原点对称,∴,,解得:,,则故选C.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.9、B【分析】根据最简二次根式概念即可解题.【详解】解:A.=,错误,B.是最简二次根式,正确,C.=3错误,D.=,错误,故选B.【点睛】本题考查了最简二次根式的概念,属于简单题,熟悉概念是解题关键.10、C【解析】试题解析:从左边看一个正方形被分成三部分,两条分式是虚线,故C正确;故选C.考点:简单几何体的三视图.二、填空题(每小题3分,共24分)11、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,知道白球、黄球的频率后,可以得出黄球概率,即可得出黄球的个数.【详解】解:∵从盒子中摸出红球的频率是15%,摸出白球的频率是45%,∴得到黄球的概率为:1﹣15%﹣45%=40%,则口袋黄小球有:60×40%=1个.故答案为:1.【点睛】本题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率,解决本题的关键是要熟练掌握频率,概率的关系.12、30°.【分析】根据勾股定理求得AD,再根据三角函数值分析计算.【详解】∵∠C=90°,CD=1,AC=,∴,而AD=BD,∴BD=2,在Rt△ABC中,AC=,BC=BD+CD=3,∴tan∠B=,∴∠B=30°,故填:30°.【点睛】本题考查勾股定理,特殊角的三角函数值,熟练掌握特殊角的三角函数值是关键.13、+.【解析】一般二次根式的有理化因式是符合平方差公式的特点的式子.据此作答.【详解】解:==+.故答案为+.【点睛】本题考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.14、1【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【详解】解:∵PA⊥x轴于点A,PB⊥y轴于B点,

∴矩形AOBP的面积=|1|=1.

故答案为:1.【点睛】本题考查了反比例函数(k≠0)系数k的几何意义:从反比例函数(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.15、4或1【分析】要使直线l与⊙O相切,就要求CH与DH,要求这两条线段的长只需求OH弦心距,为此连结OA,由直线l⊥OC,由垂径定理得AH=BH,在Rt△AOH中,求OH即可.【详解】连结OA∵直线l⊥OC,垂足为H,OC为半径,∴由垂径定理得AH=BH=AB=8∵OA=OC=10,在Rt△AOH中,由勾股定理得OH=,CH=OC-OH=10-6=4,DH=2OC-CH=20-4=1,,直线l向左平移4cm时能与⊙O相切或向右平移1cm与⊙O相切.故答案为:4或1.【点睛】本题考查平移直线与与⊙O相切问题,关键是求弦心距OH,会利用垂径定理解决AH,会用勾股定理求OH,掌握引辅助线,增加已知条件,把问题转化为三角形形中解决.16、x1=0,x2=1【分析】利用因式分解法解该一元二次方程即可.【详解】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题的关键.17、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,并求出k为负值的情况数,再利用概率公式即可求得答案.【详解】解:画树状图得:,∵共有6种等可能的结果,任选两个数的积作为k的值,k为负数的有4种,∴反比例函数的图象在第二、四象限的概率是:.

故答案为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.18、,或【分析】根据等边三角形的性质,得到CD=3,BD=,∠CBD=30°,由折叠的性质得到,,,由是等腰三角形,则可分为三种情况就那些讨论:①,②,③,分别求出答案,即可得到答案.【详解】解:∵在等边三角形中,,∴CD=3,BD=,∠CBD=30°,∵沿所在直线折叠后点落在上的点处,∴,,,由是等腰三角形,则①当时,如图,∴,∴,∴是等腰直角三角形,∴,,∵,∴,解得:;∴;②当,此时点与点D重合,如图,∴;③当,此时点F与点D重合,如图,∴,∴;综合上述,的长度为:,或;故答案为:,或.【点睛】本题考查了等边三角形的性质,折叠的性质,以及等腰三角形的性质,熟练运用折叠的性质是本题的关键.注意利用分类讨论的思想进行解题.三、解答题(共66分)19、AB=30(mm)【解析】解:如图所示,连接AB,与CO的延长线交于点E.∵夹子是轴对称图形,对称轴是CE,且A,B为一组对称点,∴CE⊥AB,AE=EB.在Rt△AEC和Rt△ODC中,∵∠ACE=∠OCD,∴Rt△AEC∽Rt△ODC,∴.∵(mm),∴(mm).∴AB=2AE=15×2=30(mm).20、(1)点,,的坐标分别为,,;(2)作图见解析;(3),【分析】(1)分别作出点关于原点对称点,,,然后根据平面直角坐标系即可写出点,、的坐标;(2)连接、、即可;(3)根据对称的性质即可得出结论.【详解】解:(1)分别作点关于原点对称点,,,如下图所示,,,即为所求,由平面直角坐标系可知:点,,的坐标分别为,,;(2)连接、、,如图所示,即为所求;(3)由对称的性质可得到,.故答案为:;.【点睛】此题考查的是作已知图形关于原点对称的图形和对称的性质,掌握已知图形关于原点对称图形的作法和对称的性质是解决此题的关键.21、x1=﹣3,x2=﹣1.【分析】利用因式分解法解方程即可.【详解】(x+3)2=2(x+3),(x+3)2﹣2(x+3)=0,(x+3)(x+3﹣2)=0,(x+3)(x+1)=0,∴x1=﹣3,x2=﹣1.22、(1)40;(2)60,15;(3)补全条形统计图见解析;(4)小明回答正确的概率是.【分析】(1)根据统计图可知,10人占全班人数的,据此求解;(2)根据(1)中所求,容易得C类占的百分比,用1减去两类的百分比即可求得类百分比;(3)根据题意,画出树状图,根据概率公式即可求得.【详解】(1)全班学生总人数为10÷25%=40(人);故答案为:40;(2)B类占的百分比为:×100%=60%;C类占的百分比为1﹣25%﹣60%=15%;故答案为:60,15;(3)C类的人数40×15%=6(人),补全图形如下:(4)根据题意画图如下:由树状图可知共有4种可能结果,其中正确的有1种,所以小明回答正确的概率是.【点睛】本题考查统计图表的中数据的计算,以及树状图的绘制,涉及利用概率公式求随机事件的概率,属综合基础题.23、(1)(0,2);(2);(3)m=2或.【分析】(1)是顶点式,可得到结论;

(2)把A点坐标代入得方程,于是得到结论;

(3)分两种情况:当抛物线开口向上或向下时,分别画出图形,找到临界位置关系,求出m的值,再进行分析变化趋势可得到结论.【详解】(1)是顶点式,顶点坐标为;(2)∵抛物线经过点,

∴m=9m+2,

解得:,∴(3)如图1,当抛物线开口向上时,抛物线顶点在线段上时,;当m>2时,直线x=1交抛物线于点(1,m+2),交点位于点B上方,所以此时线段与抛物线一定有两个交点,不符合题意;如图2,当抛物线开口向下时,抛物线顶过点时,;直线x=-3交抛物线于点(-3,9m+2),当时,9m+2<m,交点位于点A下方,直线x=1交抛物线于点(1,m+2),交点位于点B上方,所以此时线段与抛物线一定有且只有一个交点,符合题意;综上所述,当或时,抛物线与线段只有一个公共点.【点睛】本题考查了抛物线的性质,直线与抛物线的位置关系,考虑特殊情况是关键,考查了数形结合的数学思想.24、(1)x1=﹣3,x2=1;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论